Published on Web 11/13/2009
Synthesis of Chiroptical Molecular Switches by Pd-Catalyzed
Domino Reactions
Lutz F. Tietze,*,† Alexander Du¨fert,† Florian Lotz,† Lars So¨lter,‡ Kawon Oum,‡
Thomas Lenzer,‡ Tobias Beck,§ and Regine Herbst-Irmer§
Institut fu¨r Organische und Biomolekulare Chemie, Georg-August-UniVersita¨t Go¨ttingen,
Tammannstrasse 2, D-37077 Go¨ttingen, Germany, Institut fu¨r Physikalische Chemie, Georg-August-
UniVersita¨t Go¨ttingen, Tammannstrasse 6, D-37077 Go¨ttingen, Germany, and Institut fu¨r
Anorganische Chemie, Georg-August-UniVersita¨t Go¨ttingen, Tammannstrasse 4,
D-37077 Go¨ttingen, Germany
Received August 6, 2009; E-mail: ltietze@gwdg.de
Abstract: New photochromic switches based on helical alkenes can quickly and efficiently be accessed
by Pd-catalyzed domino reactions using a modular approach; this allows a wide variability in product
formation with the advantages of a convergent synthetic route. The alkenes have been synthesized in
excellent enantioselectivity and their switching properties assessed by stimulation with nanosecond laser
pulses at two different wavelengths in over 1000 switching cycles.
Introduction
The basic requirement for a molecular switch is bistability,
in which both forms can be interconverted by means of external
stimuli such as light, heat, pressure, magnetic or electric fields,
pH change or chemical reactions.2a,4 Moreover, one must be
able to selectively address both forms individually and detect
them separately, preferably on very short time scales to allow
their potential use in modern computing machines.5
The chiroptical switches developed by Feringa et al. (e.g., 1)
containing a helical tetra-substituted alkene moiety are particu-
larly promising since their stable states can be accessed using
circularly polarized light (Scheme 1).6
The development of organic compounds that allow a con-
trolled motion at the molecular level is an important prerequisite
for the construction of nanoswitches and nanomotors.1,2 Based
on today’s requirements in the miniaturization of data storage
devices and the concomitant success of digital optical data
systems, in which recording and read-out of information is
carried out by light, the shift from classic electronic semicon-
ductor elements to light-driven molecular switches has gained
great impetus. This is underlined by the development of new
information storage techniques, fabrication processes and novel
synthetic methodologies in the past years.3
Quite recently, tetra-substituted alkenes have also been
prepared by Lautens, Florent and Yu.7
The advantage in using inorganic compounds for data-storage
devices is the long-term knowledge and experience of their
fabrication, but they lack some desirable properties such as. e.g.
the fine-tuning of a large variety of physical properties or the
characterization of single isolated structures. On the other hand,
organic compounds can overcome such deficiencies with the
embedded advantage of solving problems such as decreased thermal
and photochemical stability by small structural modifications.
Here we describe an efficient and general access to novel
compounds of type 2 with a helical backbone using Pd-catalyzed
(4) (a) Sienicki, K., Ed.; Molecular Electronics and Molecular Electronic
DeVices; CRC Press: Boca Raton, FL, 1994; Vol. III. (b) Emmelius,
M.; Pawlowski, G.; Vollmann, H. W. Angew. Chem. 1989, 101, 1475–
1502. Angew. Chem., Int. Ed. Engl. 1989, 28, 1445-1471.
(5) Mockus, N. V.; Rabinovich, D.; Petersen, J. L.; Rack, J. J. Angew.
Chem. 2008, 120, 1480–1483. Angew. Chem., Int. Ed. 2008, 47, 1458-
1461.
(6) (a) Feringa, B. L. J. Org. Chem. 2007, 72, 6635–6652. (b) Feringa,
B. L.; Wynberg, H. J. Am. Chem. Soc. 1977, 99, 602–603. (c) Jager,
W. F.; de Lange, B.; Schoevaars, A. M.; Feringa, B. L. Tetrahedron:
Asymmetry 1993, 4, 1481–1497.
† Institut fu¨r Organische und Biomolekulare Chemie.
‡ Institut fu¨r Physikalische Chemie.
§ Institut fu¨r Anorganische Chemie.
(1) (a) Balzani, V.; Venturi, M.; Credi, A. Molecular DeVices and
Machines: A Journey into the Nanoworld, Wiley-VCH: Weinheim,
2003. (b) Acc. Chem. Res. 2001, 34, 409-522 (Molecular Machines
special issue).
(7) (a) Gericke, K. M.; Chai, D. I.; Bieler, N.; Lautens, M. Angew. Chem.
2009, 121, 1475–1479. Angew. Chem., Int. Ed. 2009, 48, 1447-1451.
(b) Arthuis, M.; Pontikis, R.; Florent, J.-C. J. Org. Chem. 2009, 74,
2234–2237. (c) Yu, H.; Richey, R. N.; Mendiola, J.; Adeva, M.;
Somoza, C.; May, S. A.; Carson, M. W.; Coghlan, M. J. Tetrahedron
Lett. 2008, 49, 1915–1918.
(2) (a) Feringa, B. L., Ed.; Molecular Switches; Wiley-VCH: Weinheim,
2001. (b) Crano, J. C.; Guglielmetti, R. J.; Organic Photochromic and
Thermochromic Compounds; Springer: New York, 1999, Vols. 1-3.
(c) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M.
Chem. ReV. 2000, 100, 1789–1816. (d) Huang, Y.-L.; Hung, W.-C.;
Lai, C.-C.; Liu, Y.-H.; Peng, S.-M.; Chiu, S.-H. Angew. Chem. 2007,
119, 6749–6753. Angew. Chem., Int. Ed. 2007, 46, 6629-6633.
(3) (a) Matharu, A. S.; Jeeva, S.; Ramanujam, P. S. Chem. Soc. ReV. 2007,
36, 1868–1880. (b) Mustroph, H.; Stollenwerk, M.; Bressau, V. Angew.
Chem. 2006, 118, 2068–2087. Angew. Chem., Int. Ed. 2006, 45, 2016-
2035. (c) Kawata, S.; Kawata, Y. Chem. ReV. 2000, 100, 1777–1788.
(8) (a) Tietze, L. F.; Brasche, G.; Gerricke, K. Domino Reactions in
Organic Synthesis; Wiley-VCH: Weinheim, 2006. (b) Tietze, L. F.
Chem. ReV. 1996, 96, 115–136. (c) Tietze, L. F.; Beifuss, U. Angew.
Chem. 1993, 105, 134–170. Angew. Chem., Int. Ed. Engl. 1993, 32,
131-132. (d) D’Souza, D. M.; Kiel, A.; Herten, D.-P.; Rominger, F.;
Mu¨ller, T. J. J. Chem.sEur. J. 2008, 14, 529–547. (e) D’Souza, D. M.;
Rominger, F.; Mu¨ller, T. J. J. Angew. Chem. 2004, 116, 156–161.
Angew. Chem., Int. Ed. 2004, 43, 153-158. (f) Tietze, L. F.; Kahle,
K.; Raschke, T. Chem.sEur. J. 2002, 8, 401–407.
9
10.1021/ja906260x CCC: $40.75 2009 American Chemical Society
J. AM. CHEM. SOC. 2009, 131, 17879–17884 17879