H. Yamanaka et al. / Tetrahedron 65 (2009) 9188–9201
9201
Toto, T.; Furuta, T.; Wakimoto, T.; Kan, T. Tetrahedron: Asymmetry 2008, 19,
2771–2773.
mixture was diluted with saturated NH4Cl aqueous, and products
were extracted with EtOAc. The organic layer was washed suc-
cessively with saturated aqueous NH4Cl solution, and saturated
aqueous NaHCO3 solution, H2O and brine, and dried. Removal of
the solvent left a residue, which was purified by preparative TLC
(1:50 EtOAc/hexane, developed three times) to afford 36 (1.1 mg,
50% for four steps) as a colorless syrup: HRMS (FAB) m/z calcd for
C22H27O4, (MþH)þ 355.1909, found: 355.1908. The 1H NMR spec-
tral data were fully identical with those of 36 prepared from 35,
and chiral HPLC analysis assigned the absolute configuration of 36
prepared from 1 as R with >99% ee.
10. For total synthesis of sphingofungins
E and/or F, see: (a) Kobayashi, S.;
Matsumura, M.; Furuta, T.; Hayashi, T.; Iwamoto, S. Synlett 1997, 301–303;
(b) Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima, M.; Hanada, K. J. Am. Chem.
Soc. 1998, 120, 908–919; (c) Kobayashi, S.; Furuta, T. Tetrahedron 1998, 54,
10275–10294; (d) Trost, B. M.; Lee, C. B. J. Am. Chem. Soc. 1998, 120, 6818–6819;
Trost, B. M.; Lee, C. J. Am. Chem. Soc. 2001, 123, 12191–12201; (e) Liu, D.-G.;
Wang, B.; Lin, G.-Q. J. Org. Chem. 2000, 65, 9114–9119; (f) Wang, B.; Yu, X.-M.;
Lin, G.-Q. Synlett 2001, 904–906; (g) Nakamura, T.; Shiozaki, M. Tetrahedron Lett.
2001, 42, 2701–2704; Tetrahedron 2002, 58, 8779–8791; (h) Oishi, T.; Ando, K.;
Inomiya, K.; Sato, H.; Iida, M.; Chida, N. Org. Lett. 2002, 4, 151–154; Bull. Chem.
Soc. Jpn. 2002, 75, 1927–1947; (i) Lee, K.-Y.; Oh, C.-Y.; Ham, W.-H. Org. Lett. 2002,
4, 4403–4405; (j) Li, M.; Wu, A. Synlett 2006, 2985–2988.
11. For total synthesis of mycestericins, see: (a) Fujita, T.; Hamamichi, N.; Matsu-
zaki, T.; Kitao, Y.; Kiuchi, M.; Node, M.; Hirose, R. Tetrahedron Lett. 1995, 36,
8599–8602; (b) Shibata, K.; Shingu, K.; Vassilev, V. P.; Nishide, K.; Fujita, T.;
Node, M.; Kajimoto, T.; Wong, C.-H. Tetrahedron Lett. 1996, 37, 2791–2794;
(c) Nishide, K.; Shibata, K.; Fujita, T.; Kajimoto, T.; Wong, C.-H.; Node, M.
Heterocycles 2000, 52, 1191–1201; (d) Iwabuchi, Y.; Furukawa, M.; Esumi, T.;
Hatakeyama, S. Chem. Commun. 2001, 2030–2031. Synthesis and biological
activity of sulfamisterin and its derivatives, see: (e) Sato, H.; Maeba, T.; Yanase,
R.; Yamaji-Hasegawa, A.; Kobayashi, T.; Chida, N. J. Antibiot. 2005, 58, 37–49.
12. A part of this work has been published as a preliminary communication, see:
Sato, H.; Sato, K.; Iida, M.; Yamanaka, H.; Oishi, T.; Chida, N. Tetrahedron Lett.
2008, 49, 1943–1947.
4.6.4. Degradation of 14-epi-mycestericin A (34). The similar re-
action conditions as described for conversion of 1 to 36 were applied
to 14-epi-mycestericin A (34, 1.5 mg, 3.7 mmol) to afford ent-36
(0.5 mg, 38% for four steps) as a colorless syrup: HRMS (FAB) m/z
calcd for C22H27O4, (MþH)þ 355.1909, found: 355.1907. The 1H NMR
spectral data were fully identical with those of 36 prepared from 35,
and chiral HPLC analysis assigned the absolute configuration of ent-
36 prepared from 34 as S with >99% ee.
13. Chida, N.; Takeoka, J.; Tsutsumi, N.; Ogawa, S. J. Chem. Soc., Chem. Commun.
1995, 793–794; Chida, N.; Takeoka, J.; Ando, K.; Tsutsumi, N.; Ogawa, S. Tetra-
hedron 1997, 53, 16287–16298.
Acknowledgements
14. For a comprehensive review on Overman rearrangement and related reactions,
see: Overman, L. E.; Carpenter, N. E. In Organic Reactions; Overman, L. E., Ed.;
Wiley: New York, NY, 2005; Vol. 66, pp 1–107.
This work was supported in part by a Grant-in-Aid for the 21st
Century COE Program ‘Keio Life Conjugate Chemistry’ from the Min-
istry of Education, Culture, Sports, Science, and Technology, Japan.
15. Recent reports on syntheses of natural products and related compounds uti-
lizing Overman rearrangement, see: (a) Momose, T.; Kaiya, Y.; Hasegawa, J.;
Sato, T.; Chida, N. Synthesis 2009, 2983–2991; (b) Imaoka, T.; Iwamoto, O.;
Noguchi, K.; Nagasawa, K. Angew. Chem., Int. Ed. 2009, 48, 3799–3801; (c) Hama,
N.; Matsuda, T.; Sato, T.; Chida, N. Org. Lett. 2009, 11, 2687–2690; (d) Dickson,
D. P.; Wardrop, D. J. Org. Lett. 2009, 11, 1341–1344; (e) Momose, T.; Hama, N.;
Higashino, C.; Sato, H.; Chida, N. Tetrahedron Lett. 2008, 49, 1376–1379;
(f) Matveenko, M.; Kokas, O. J.; Banwell, M. G.; Willis, A. C. Org. Lett. 2007, 9,
3683–3685; (g) Hakansson, A. E.; Palmelund, A.; Holm, H.; Madsen, R.
Chem.dEur. J. 2006, 12, 3243–3253; (h) Tsujimoto, T.; Nishikawa, T.; Urabe, D.;
Isobe, M. Synlett 2005, 433–436; (i) Nishikawa, T.; Urabe, D.; Yoshida, K.;
Iwabuchi, T.; Asai, M.; Isobe, M. Chem.dEur. J. 2004, 10, 452–462; (j) Ohyabu, N.;
Nishikawa, T.; Isobe, M. J. Am. Chem. Soc. 2003, 125, 8798–8805.
16. Sa´nchez-Sancho, F.; Valverde, S.; Herrado´n, B. Tetrahedron: Asymmetry 1996, 7,
3209–3246.
References and notes
1. (a) Sasaki, S.; Hashimoto, R.; Kiuchi, M.; Inoue, K.; Ikumoto, T.; Hirose, R.; Chiba,
K.; Hoshino, Y.; Okumoto, T.; Fujita, T. J. Antibiot. 1994, 47, 420–433; (b) Fujita, T.;
Hamamichi, N.; Kiuchi, M.; Matsuzaki, T.; Kitao, Y.; Inoue, K.; Hirose, R.; Yoneta,
M.; Sasaki, S.; Chiba, K. J. Antibiot. 1996, 49, 846–853.
2. (a) Klurpfel, D.; Bagli, J.; Baker, H.; Charest, M.-P.; Kudelski, A.; Sehgal, S. N.;
Ve´zina, C. J. Antibiot. 1972, 25, 109–115; Bagli, J. F.; Kluepfel, D.; Jacques, M. S.
J.Org. Chem. 1973, 38, 1253–1260; (b) Aragozzini, F.; Manachini, P. L.; Craveri, R.;
Rindone, B.; Scolastico, C. Tetrahedron 1972, 28, 5493–5498; (c) Fujita, T.; Inoue,
K.; Yamamoto, S.; Sasaki, S.; Toyama, R.; Yoneta, M.; Hoshino, Y.; Okumoto, T.
J. Antibiot. 1994, 47, 208–215; Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.;
Sasaki, S.; Toyama, R.; Yoneta, M.; Chiba, K.; Hoshino, Y.; Okumoto, T. J. Antibiot.
1994, 47, 216–225; Sasaki, S.; Hashimoto, R.; Kiuchi, M.; Inoue, K.; Ikumoto, T.;
Hirose, R.; Chiba, K.; Hoshino, Y.; Okumoto, T.; Fujita, T. J. Antibiot. 1994, 47,
420–433.
17. Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem. 1998, 63, 188–192.
18. The optical purities of 14, 5a, and 5b were all determined to be >99% ee, by
chiral column analyses (Chiralcel OD-H), confirming that no racemization had
occurred during the preparation of these compounds. See Experimental
section.
19. Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984, 25, 265–268; Marshall, J. A. Chem.
Rev. 2000, 100, 3163–3186.
20. Ohba, S.; Sato, H.; Iida, M.; Chida, N. Acta Crystallogr., Sect. E 2003, E59, o1259–
o1260.
3. Brunner, M.; Koskinen, A. M. P. Curr. Org. Chem. 2004, 8, 1629–1645.
4. For isolation of sphingofungins A–D, see: (a) VanMiddlesworth, F.; Giacobbe,
R. A.; Lopez, M.; Garrity, G.; Bland, J. A.; Batizal, K.; Frontling, R. A.; Wilson, K.
E.; Monaghan, R. L. J. Antibiot. 1992, 45, 861–867; (b) VanMiddlesworth, F.;
Dufresne, C.; Wincott, F. E.; Mosley, R. T.; Wilson, K. E. Tetrahedron Lett. 1992,
33, 297–300 For isolation of sphingofungins E and F, see: (c) Horn, W. S.;
Smith, J. L.; Bills, G. F.; Raghoobar, S. L.; Helms, G. L.; Kurta, M. B.; Marrinan, J.
A.; Frommer, B. R.; Thornton, R. A.; Mandala, S. M. J. Antibiot. 1992, 45, 1692–
1696.
5. Yamaji-Hasegawa, A.; Takahashi, A.; Tetsuka, Y.; Senoh, Y.; Kobayashi, T. Bio-
chemistry 2005, 44, 268–277.
6. (a) Miyake, Y.; Kozutumi, Y.; Nakamura, S.; Fujita, T.; Kawasaki, T. Biochem.
Biophys. Res. Commun. 1995, 211, 396–403; (b) Zweerink, M. M.; Edison, A. M.;
Wells, G. B.; Pinto, W.; Lester, R. L. J. Biol. Chem. 1992, 267, 25032–25038.
21. (a) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408–7410;
(b) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497–4513.
22. (a) Carmack, M.; Kelly, C. J. J. Org. Chem. 1968, 33, 2171–2173; (b) Rubin, L. J.;
Lardy, H. A.; Fischer, H. O. L. J. Am. Chem. Soc. 1952, 74, 425–428.
23. Narisada, M.; Ohtami, M.; Watanabe, F.; Uchida, K.; Arita, H.; Doteuchi, M.;
Hanasaki, K.; Kakushi, H.; Otani, K.; Hara, S. J. Med. Chem. 1988, 31, 1847–1854.
24. Taber, D. F.; Deker, P. B.; Gaul, M. D. J. Am. Chem. Soc. 1987, 109, 7488–7494.
25. (a) Negishi, E. Pure Appl. Chem. 1981, 53, 2333–2356; (b) Negishi, E. Acc. Chem. Res.
1982, 15, 340–348; (c) Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120,
11198–11199;(d)Tamaru,Y.;Ochiai,H.; Nakamura,T.;Yoshida, Z. Angew. Chem., Int.
Ed. Engl.1987, 26, 1157–1158; (e) Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233–257.
26. The structure of 25 has been tentatively assigned; there is a possibility that
compound 25 would be a positional isomer of the conjugated carbon–carbon
double bonds.
27. Isobe, M.; Ichikawa, Y.; Bai, D.-L.; Masaki, H.; Goto, T. Tetrahedron 1987, 43,
4767–4776.
28. Lipshutz, B. H.; Miller, T. A. Tetrahedron Lett. 1989, 30, 7149–7152 Significant
amounts of the corresponding (ethoxymethyl)ether were formed when 31 was
reacted with Bu4NF in THF or CsF in HMPA.
29. The low yield of this step was mainly due to the decomposition of the sub-
strate; the formation of polar by-products, whose structures could not be de-
termined, was observed.
30. For a review on the Suzuki–Miyaura coupling, see: (a) Miyaura, N.; Suzuki, A.
Chem. Rev. 1995, 95, 2457–2483 For a review on the B-alkyl Suzuki–Miyaura
coupling, see: (b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem., Int.
Ed. 2001, 40, 4544–4568.
7. Recent reviews of synthesis of natural products possessing
a-substituted
a
-amino acid structures, see: (a) Kang, S. H.; Kang, S. Y.; Lee, H.-S.; Buglass, A. J.
Chem. Rev. 2005, 105, 4537–4558; (b) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem.
2005, 5127–5143; (c) Cativiela, C.; Dı´az-de-Villegas, M. D. Tetrahedron: Asym-
metry 2007, 18, 569–623.
8. Recent reviews on chemistry and biological activities of myriocin-related
compounds, see: (a) Byun, H.-S.; Lu, X.; Bittman, R. Synthesis 2006, 2447–2474;
(b) Liao, J.; Tao, J.; Lin, G.; Liu, D. Tetrahedron 2005, 61, 4715–4733.
9. For total synthesis of myriocin, see: (a) Banfi, L.; Beretta, M. G.; Colombo, L.;
Gennari, C.; Scolastico, C. J. Chem. Soc., Chem. Commun. 1982, 488–490; J. Chem.
Soc., Perkin Trans. 1 1983, 1613–1619; (b) Yoshikawa, M.; Yokokawa, Y.; Okuno,
Y.; Murakami, N. Chem. Pharm. Bull. 1994, 42, 994–996; Tetrahedron 1995, 51,
6209–6228; (c) Sano, S.; Kobayashi, Y.; Kondo, T.; Takebayashi, M.; Maruyama,
S.; Fujita, T.; Nagao, Y. Tetrahedron Lett. 1995, 36, 2097–2100; (d) Hatakeyama,
S.; Yoshida, M.; Esumi, T.; Iwabuchi, Y.; Irie, H.; Kawamoto, T.; Yamada, H.;
Nishizawa, M. Tetrahedron Lett. 1997, 38, 7887–7890; (e) Oishi, T.; Ando, K.;
Chida, N. Chem. Commun. 2001, 1932–1933; (f) Lee, K.-Y.; Oh, C.-Y.; Kim, Y.-H.;
Joo, J.-E.; Ham, W.-H. Tetrahedron Lett. 2002, 43, 9361–9363; (g) Martinkova´,
M.; Gonda, J.; Raschmanova´, J.; Vojtickova´, M. Tetrahedron 2007, 63, 10603–
10607; (h) Jones, M. C.; Marsden, S. P. Org. Lett. 2008, 10, 4125–4128; (i) Inai, M.;
31. Johnson, C. R.; Braun, M. P. J. Am. Chem. Soc. 1993, 115, 11014–11015.
32. The optical purities of 23c and ent-23c were determined to be >99% ee, by
chiral column analyses (Chiralcel OD-H) of the derived alcohols 24c and ent-
24c. See Experimental section.