Fig. 4 Temperature-dependent CD studies of thymine dimers containing (a) L-proline Ia, (b) D-proline Ib and (c) glycine Ic at 100 mM
concentration, in water at 10 (red), 20 (black), 40 (blue), 60 (light blue) and 80 1C (purple).
first report where such profound effects of backbone linker
chirality on the resulting dimer CD signals are reported.
The strong positive band at B275 nm in the T-(D-proline)-T
dimer Ib displayed significant temperature dependence from
10–80 1C [Fig. 4(b)] as reported earlier for the TpT dimer
block.14b For the T-(L-proline)-T dimer Ia, increasing
temperature resulted in the reduction of the amplitude of
CD minimum band at B275 nm [Fig. 4(a)]. These changes
in intensities of CD maxima and minima imply the presence of
higher fractions of stacked species in Ib and Ia. No temperature-
dependent change in CD intensity was observed in the case of
T-(glycine)-T dimer Ic [Fig. 4(c)] and thus fractions of stacked
species are less significant at the dimer level in Ic. The
A. D. Gunjal, U. D. Phalgune and V. A. Kumar, Org. Lett.,
2007, 9, 2697–2700; (d) T. Govindaraju and V. A. Kumar, Chem.
Commun., 2005, 495–497; (e) T. Govindaraju, V. A. Kumar and
K.
N.
Ganesh,
Chem.
Commun.,
2004,
860–61;
(f) R. J. Worthington, A. P. O’Rourke, J. Morral, T. H. S. Tan
and J. Micklefield, Org. Biomol. Chem., 2007, 5, 249–259;
(g) J. K. Pokorski, M. A. Witschi, B. L. Purnell and
D. H. Appella, J. Am. Chem. Soc., 2004, 126, 15067–15073;
(h) T. Vilaivan and C. Srisuwannaket, Org. Lett., 2006, 8,
1897–1900; (i) R. Threlfall, A. Davies, N. M. Howarth, J. Fisher
and R. Cosstick, Chem. Commun., 2008, 585–587;
(j) R. J. Worthington, N. M. Bell, R. Wong and J. Micklefield,
Org. Biomol. Chem., 2008, 6, 92–103.
3 J. Kurreck, Eur. J. Biochem., 2003, 270, 1628–1644.
4 M. Manoharan, Curr. Opin. Chem. Biol., 2004, 8, 570–579.
5 J. J. Turner, M. Fabani, A. A. Arzumano, G. Ivanova and
M. J. Gait, Biochim. Biophys. Acta, Biomembr., 2006, 1758,
290–300.
1
downfield shift in the H NMR signal corresponding to H-6
protons in Ia (d 8.08 and 7.66) and Ib (d 8.01 and 7.56)
compared to Ic (d 7.69 and 7.64) also implies the presence of
stacked species in Ia and Ib as against Ic.14b Temperature-
dependent NMR studies in Ib confirmed the increasing
fraction of unstacked species at higher temperatures, evident
6 P. Sazani and R. J. Kole, Clin. Invest., 2003, 112, 481–486.
7 E. Uhlmann, A. Peyman, G. Breipohl and D. W. Will, Angew.
Chem., Int. Ed., 1998, 37, 2796–2823.
8 P. E. Nielsen and M. Egholm, Peptide Nucleic Acids (PNA).
Protocols and Applications, ed. P. E. Nielsen and M. Egholm,
Horizon Scientific, Norfolk, CT, 1999.
1
9 V. A. Kumar and K. N. Ganesh, Acc. Chem. Res., 2005, 38,
404–412.
by an upfield shift of the H-6 resonance signal in H NMR
(ESIw). We further observed that the change in H-6 proton
chemical shift depends on temperature and confirmed that the
unstacked species in the dimer at higher temperature reduces
the magnitude of the downfield shift. Though the north/south
conformational equilibria of the sugar rings are known to
affect the base stacking interactions,15 these (ESIw) could not
be directly correlated to the CD intensity corresponding to the
dimer blocks Ia,b,c in the present case. The change in the
chirality of linker amino acid does not drastically alter the N/S
sugar conformations in the case of the three dimers reported in
this paper. Thus we arrive at the conclusion that the different
adopted stacked conformations due to internucleoside
chirality could be the reason for opposite CD signals in Ia
and Ib. To the best of our knowledge, this is the first report
regarding the control of base stacking interactions by
internucleoside linker chirality.
10 A. Dragulescu-Andrasi, P. Zhou, G. He and D. H. Ly, Chem.
Commun., 2005, 244–246.
11 J. J. Turner, S. Jones, M. M. Fabani, G. Ivanova,
A. A. Arzumanov and M. J. Gait, Blood Cells, Mol. Dis., 2007,
38, 1–7.
12 K. Gogoi and V. A. Kumar, Chem. Commun., 2008, 706–708.
13 (a) P. M. Burgers and F. Eckstein, Biochemistry, 1979, 18, 592–596;
(b) H. Almer, J. Stawinski, R. Stromberg and M. Thelin, J. Org.
¨
Chem., 1992, 57, 6163–6169; (c) M. Oivanen, M. Ora, H. Almer,
R. Stromberg and H. Lonnberg, J. Org. Chem., 1995, 60,
¨
¨
5620–5627; (d) P. S. Miller, N. Dreon, S. M. Pulford and
K. B. McParland, J. Biol. Chem., 1980, 255, 9659–9665;
(e) N. Oka, T. Kondo, S. Fujiwara, Y. Maizuru and T. Wada,
Org. Lett., 2009, 11, 967–970.
14 (a) C. R. Cantor, M. M. Warshaw and H. Shapiro, Biopolymers,
1970, 9, 1059; (b) C. Glemarec, A. Nyilas, C. Sund and
J. Chattopadhyaya, J. Biochem. Biophys. Methods, 1990, 21,
311–332; (c) C. Glemarec, R. C. Reynolds, P. A. Crooks,
J. A. Maddry, M. S. Akhtar, J. A. Montgomery, J. A. Secrist III
and J. Chattopadhyaya, Tetrahedron, 1993, 49, 2287–2298;
(d) K. J. Fettes, N. Howard, D. T. Hickman, S. Adah,
M. R. Player, P. F. Torrence and J. Micklefield, J. Chem. Soc.,
Perkin Trans. 1, 2002, 485–495; (e) T. Ostrowski, J.-C. Maurizot,
M.-T. Adeline, J.-L. Fourrey and P. Clivio, J. Org. Chem., 2003,
68, 6502–6510.
S. B. thanks UGC, New Delhi for a research fellowship.
V. A. K. thanks Wellcome Trust, UK and CSIR, New Delhi
for financial support.
15 C. Desnous, B. R Babu, C. Moriou, J. U. O. Mayo, A. Favre,
J. Wengel and P. Clivio, J. Am. Chem. Soc., 2008, 130, 30–31.
16 P. C. Montevecchi, A. Manetto, M. L. Navacchia and
C. Chatgilialoglu, Tetrahedron, 2004, 60, 4303–4308.
Notes and references
1 P. E. Nielsen, M. Egholm, R. H. Berg and O. Buchardt, Science,
1991, 254, 1497–1500.
2 (a) V. A. Kumar, Eur. J. Org. Chem., 2002, 2021–2032;
(b) P. S. Pallan, P. von Matt, C. J. Wilds, K.-H. Altmann and
M. Egli, Biochemistry, 2006, 45, 8048–8057; (c) K. Gogoi,
17 T. E. Creighton, Proteins, W. H. Freeman & Co., 2nd edn, 1993,
pp. 173–174.
18 L. J. Rinkel and C. Altona, J. Biomol. Struct. Dyn., 1987, 4, 621.
ꢀc
This journal is The Royal Society of Chemistry 2009
6648 | Chem. Commun., 2009, 6646–6648