In conclusion, we have developed synthetic methods that
enable the preparation of side-chain linked homodimeric
peptides, and have applied the method to the synthesis of an
Ab dimer containing 80 residues. This method should be
widely applicable to the synthesis of a range of side-chain
cross-linked peptide dimers. We have developed a valuable
tool for the study of discrete Ab dimers and have shown that
they exhibit increased oligomerisation and fibrillisation
compared with the corresponding monomers. Further studies
of the neurotoxicity of Ab dimers and implications for the
progression of AD will be reported in due course.
Fig. 4 DLS data for Ab(1–40) monomer (a) and Ab(1–40) dimer 8d
(b) (0.5 mg mLÀ1 in 20 mM HEPES, pH 7.0). (c) Amyloid formation
by Ab(1–40) monomer (blue) and Ab(1–40) dimer 8d (red), as
monitored by ThT fluorescence.
This work was supported by the National Health and
Medical Research Council (SRF to KJB) and the Australian
Research Council (Federation Fellowship to MWP). Access
to equipment and technical assistance through the Bio21
Collaborative Crystallisation Centre and the Bio21 Institute
Electron Microscopy and Research Transfer Facilities is
gratefully acknowledged.
Dynamic light scattering experiments conducted on the
Ab(1–40) peptides exhibited high polydispersity and yielded
different profiles for each experiment inappropriate for
cumulant data analysis. The data shown in Fig. 4 represent
size distribution profiles from single experiments, and show
both the Ab(1–40) monomer and dimer peptides exhibit highly
dynamic profiles consistent with oligomeric distribution and
high order aggregates soon after dissolution.
Notes and references
1 C. L. Masters, R. Cappai, K. J. Barnham and V. L. Villemagne,
J. Neurochem., 2006, 97, 1700; C. L. Masters, G. Simms,
N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther,
Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 4245.
To further ascertain the aggregation and fibrillisation properties
of the Ab dimers 8b–d, ThT fluorescence and electron
microscopy studies were performed. Both the Ab(1–16) and
Ab(1–28) dimers, 8b and 8c, showed no increase in ThT
fluorescence over time (data not shown), indicating the
absence of amyloid formation in agreement with the DLS
data. The Ab(1–40) dimer 8d, however, displayed an increase
in ThT fluorescence after 10 h, indicative of amyloid formation.
Notably, the dimer 8d exhibited a significant decrease in the
lag time to amyloid formation compared with the monomer
(10 h for dimer 8d at 7 mM compared with 42 days for
monomer at 14 mM,13 Fig. 4c). To confirm fibril formation,
the Ab(1–40) monomer and dimer were aged over 6 days and
analysed by electron microscopy. The Ab(1–40) dimer 8d
clearly shows fibril formation after just 1 day, whereas the
monomer slowly forms fibrils over the 6-day period (Fig. 5).
2 D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl,
M. S. Wolfe, M. J. Rowan and D. J. Selkoe, Nature, 2002, 416,
535; C. A. McLean, R. A. Cherny, F. W. Fraser, S. J. Fuller,
M. J. Smith, K. Beyreuther, A. I. Bush and C. L. Masters,
Ann. Neurol., 1999, 46, 860.
3 G. M. Shankar, S. Li, T. H. Mehta, A. Garcia-Munoz,
N. E. Shepardson, I. Smith, F. M. Brett, M. A. Farrell,
M. J. Rowan, C. A. Lemere, C. M. Regan, D. M. Walsh,
B. L. Sabatini and D. J. Selkoe, Nat. Med. (N. Y.), 2008, 14, 837.
4 D. G. Smith, R. Cappai and K. J. Barnham, Biochim.
Biophys. Acta, 2007, 1768, 1976; C. S. Atwood, G. Perry,
H. Zeng, Y. Kato, W. D. Jones, K.-Q. Ling, X. Huang,
R. D. Moir, D. Wang, L. M. Sayre, M. A. Smith, S. G. Chen
and A. I. Bush, Biochemistry, 2004, 43, 560.
5 F. E. Ali, A. Leung, R. A. Cherny, C. Mavros, K. J. Barnham,
F. Separovic and C. J. Barrow, Free Radical Res., 2006, 40, 1;
J. C. Yoburn, W. Tian, J. O. Brower, J. S. Nowick, C. G. Glabe
and D. L. Van Vranken, Chem. Res. Toxicol., 2003, 16, 531.
6 J. C. Yoburn and D. L. Van Vranken, Org. Lett., 2003, 5, 2817.
7 M. A. Ashraf, J. K. Notta and J. S. Snaith, Tetrahedron Lett.,
2003, 44, 9115; S. Ladame, R. J. Harrison, S. Neidle and
S. Balasubramanian, Org. Lett., 2002, 4, 2509.
8 H. E. Blackwell, P. A. Clemons and S. L. Schreiber, Org. Lett.,
2001, 3, 1185; K. Conde-Frieboes, S. Andersen and J. Breinholt,
Tetrahedron Lett., 2000, 41, 9153.
9 M. Lange, A. S. Cuthbertson, R. Towart and P. M. Fischer, J. Pept.
Sci., 1998, 4, 289; A. J. Daniels, J. E. Matthews, R. J. Slepetis,
M. Jansen, O. H. Viveros, A. Tadepalli, W. Harrington, D. Heyer,
A. Landavazo, J. J. Leban and A. Spaltenstein, Proc. Natl. Acad. Sci.
U. S. A., 1995, 92, 9067; P. K. Bhatnagar, E. K. Agner, D. Alberts,
B. E. Arbo, J. F. Callahan, A. S. Cuthbertson, S. J. Engelsen,
H. Fjerdingstad, M. Hartmann, D. Heerding, J. Hiebl,
W. F. Huffman, M. Hysben, A. G. King, P. Kremminger,
C. Kwon, S. LoCastro, D. Løvhaug, L. M. Pelus, S. Petteway and
J. S. Takata, J. Med. Chem., 1996, 39, 3814.
10 A. K. Tickler, A. B. Clippingdale and J. D. Wade, Protein Pept.
Lett., 2004, 11, 377.
11 Y. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, J. A. Ellman
and C. R. Bertozzi, J. Am. Chem. Soc., 1999, 121, 11684;
M. Schnolzer, P. Alewood, A. Jones, D. Alewood and S. B. H.
Kent, Int. J. Pept. Protein Res., 1992, 40, 180.
12 A. K. Tickler, C. J. Barrow and J. D. Wade, J. Pept. Sci., 2001, 7, 488.
13 J. T. Jarrett, E. P. Berger and P. T. Lansbury, Jr, Biochemistry,
1993, 32, 4693.
Fig. 5 Negatively stained TEM images of aged solutions of Ab(1–40)
dimer 8d (top) and Ab(1–40) monomer (bottom), after 1, 2 and 6 days.
Scale bar: 50 nm.
ꢀc
This journal is The Royal Society of Chemistry 2009
6230 | Chem. Commun., 2009, 6228–6230