Organic Letters
Letter
Scheme 7. Plausible Mechanism (Ligands Are Omitted for
Clarity)
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(Nos. 21272149 and 21672136) and the Innovation Program of
Shanghai Municipal Education Commission (No. 14ZZ094) for
financial support. We thank Prof. Hongmei Deng (Laboratory for
Microstructures, SHU) for NMR spectroscopic measurements.
REFERENCES
■
(1)Forselectedreviews,see:(a)Shindo, M.;Matsumoto, K. InTopicsin
CurrentChemistry;Springer-Verlag:Berlin,2012;pp1−32. (b)Reiser, O.
Angew. Chem., Int. Ed. 2006, 45, 2838. (c) Flynn, A. B.; Ogilvie, W. W.
Chem. Rev. 2007, 107, 4698. (d) Negishi, E.-I.; Huang, Z.; Wang, G.;
Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474. (e) Irie,
M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Chem. Rev. 2014, 114,
12174.
(2)Forselectedexamples,see:(a)Scribner,R.M.J.Org.Chem.1965,30,
3657. (b) Maichrowski, J.; Gjikaj, M.; Hubner, E. G.; Bergmann, B.;
̈
Muller,I.B.;Kaufmann,D.E.Eur.J.Org.Chem.2013,2091.(c)Zapol’skii,
̈
V.A.;Namyslo,J.C.;Sergeev,G.;Bronstrup,M.;Gjikaj,M.;Kaufmann,D.
̈
excluded for this reaction. Considering the fact that no cyclic
products could be formed from dipropargyl ether or amine (eq
3),14 as well as the results that the reaction was not inhibited with
theadditionofhydroquinone(eq4)or1,4-dinitrobenzene(eq5),
we could rule out the possibility of a radical pathway.
E. Eur. J. Org. Chem. 2015, 7763.
(3) For selected examples, see: (a) Sun, C.; Jin, J.; Zhu, J.; Wang, H.;
Yang, D.; Xing, J. Bioorg. Med. Chem. Lett. 2010, 20, 3301. (b) Sun, C.;
Wang, J.; Wu, Y.; Nan, S.; Zhang, W. Heterocycles 2013, 87, 1865.
(4) For selected examples, see: (a) Perrot, R.; Berger, R. Compt. Rend.
1952,235,185.(b)Freeman,J.P.;Emmons,W.D.J.Am.Chem.Soc.1957,
79, 1712. (c) Campbell, R. D.; Schultz, F. J. J. Org. Chem. 1960, 25, 1877.
(d) Iwai, I.; Tomita, K.; Ide, J. Chem. Pharm. Bull. 1965, 13, 118.
(5) For selected reviews, see: (a) Chemler, S. R.; Bovino, M. T. ACS
Catal.2013,3,1076.(b)Shimizu,Y.;Kanai,M.TetrahedronLett.2014,55,
3727.(c)Besset,T.;Poisson,T.;Pannecoucke,X.Eur.J.Org.Chem.2015,
2765. Forrecentselectedexamples,see:(d)Tian,P.-P.;Cai, S.-H.;Liang,
Q.-J.; Zhou, X.-Y.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2015, 17, 1636.
(e)Tomita,R.;Koike,T.;Akita,M.Angew.Chem.,Int.Ed.2015,54,12923.
(f) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org.
Althoughthedetailedreactionpathwayremainedtobeclarified,
a plausible mechanism for this reaction was proposed on the basis
of above results (Scheme 7). Initially, copper nitrate was
coordinated to the CC triple bond of alkyne to give complex
A. In most cases, the activated CC triple bond was attacked by
theCliongeneratedfromSnCl2 andachievetheintermediate(E)-
B (path A), which afforded alkene (E)-2 as the major product
through the [1,3]-shift of the nitro group.8 Notably, intermediate
(E)-B could be stabilized by a six-membered intramolecular
hydrogen-bonding interaction (R2 = H).15 However, for
substrates with strong electron-donating groups (1b and 1m in
Scheme2),aligandexchangebetweenClandnitrateionsoccurred
predominately to give complex C (path B), which led to the
formation of complexed adduct (Z)-B through cis-insertion and
finally afforded (Z)-2 as the major product.
In summary, we have described a novel and efficient copper
nitrate mediated approach for the direct access of synthetic
interesting polysubstituted α-chloro-β-nitroolefins from simple
alkynes and low toxic stannous chloride. The reaction featured a
wide substrate scope with functional groups tolerated. Various
applications of given products allowed the straightforward
assembly of molecular complexity and indicated them as
promising and valuable building blocks in organic synthesis.
́
Lett. 2015, 17, 5188. (g) Domanski, S.; Chaładaj, W. ACS Catal. 2016, 6,
3452. (h) Tlahuext-Aca, A.; Hopkinson, M. N.; Garza-Sanchez, R. A.;
Glorius, F. Chem. - Eur. J. 2016, 22, 5909. (i) Huang, L.; Rudolph, M.;
Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 4808.
(j) Wang, X.; Studer, A. J. Am. Chem. Soc. 2016, 138, 2977. (k) Shi, J.-L.;
Zhang, J.-C.; Wang, B.-Q.; Hu, P.; Zhao, K.-Q.; Shi, Z.-J. Org. Lett. 2016,
18, 1238. (l) Xu, T.; Wu, Y.; Yuan, Z.; Guan, H.; Liu, G. Organometallics
2016, 35, 1347.
(6) For selected examples, see: (a) Ghobrial, M.; Schnurch, M.;
̈
Mihovilovic, M. D. J. Org. Chem. 2011, 76, 8781. (b) Lu, Y.; Wang, R.;
Qiao, X.; Shen, Z. Synlett 2011, 1038. (c) Mo, S.; Zhu, Y.; Shen, Z. Org.
Biomol.Chem.2013,11,2756.(d)Mo,S.;Yang,Z.;Xu,J.Eur.J.Org.Chem.
2014, 3923.
̂
(7)Forselectedexamples,see:(a)Gigante, B.;Prazeres, A.O.;Marcelo-
Curto, M. J.; Cornelis, A.; Laszlo, P. J. Org. Chem. 1995, 60, 3445.
́
(b)Lalitha, A.;Sivakumar, K. Synth. Commun. 2008,38,1745. (c)Fan, Z.;
Ni, J.; Zhang, A. J. Am. Chem. Soc. 2016, 138, 8470.
ASSOCIATED CONTENT
* Supporting Information
■
(8)Gao, M.;Li, Y.; Gan, Y.;Xu, B. Angew. Chem., Int. Ed. 2015, 54, 8795.
(9)(a) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422. (b) Glaser, C. Ann.
Chem. Pharm. 1870, 154, 137. (c) Hay, A. S. J. Org. Chem. 1960, 25, 1275.
(d) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
S
TheSupportingInformationisavailablefreeofchargeontheACS
(10) Hsieh, T. H. H.; Dong, V. M. Tetrahedron 2009, 65, 3062.
(11) For crystallographic data of compounds (E)-2a, 4, and 6, see the
(12) Rappoport, Z.; Topol, A. J. Chem. Soc., Perkin Trans. 2 1975, 863.
(13) Rappoport, Z.; Topol, A. J. Org. Chem. 1989, 54, 5967.
(14) (a) Taniguchi, T.; Ishibashi, H. Org. Lett. 2010, 12, 124.
(b) Taniguchi, T.; Fujii, T.; Ishibashi, H. J. Org. Chem. 2010, 75, 8126.
(15) (a) Gorelsky, S. I.; Lapointe, D.;Fagnou, K. J. Am. Chem. Soc. 2008,
130, 10848. (b) Ishikawa, A.; Nakao, Y.; Sato, H.; Sakaki, S. Dalton Trans.
2010, 39, 3279.
Experimental procedures and characterization data for all
X-ray data for compound (E)-2a (CIF)
X-ray data for compound 4 (CIF)
X-ray data for compound 6 (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX