Table 2 Asymmetric addition of (triisopropylsilyl)acetylene (2o) to
nitroalkenes 1a
Scheme 2 Transformation of 3fo into 4ÁHCl. Reagents and conditions:
(a) TsOHÁH2O, EtOH, 70 1C; (b) Zn, Me3SiCl, EtOH, rt; (c) Bu4NF,
THF, rt; (d) HCl in Et2O.
Entry
R
Time/h Yieldb (%) eec (%)
1
2
3
4
5
6
7
8
Ph (1a)
12
24
24
24
24
24
24
24
24
48
48
48
48
94 (3ao)
91 (3bo)
95 (3co)
95 (3do)
70 (3eo)
92 (3fo)
95 (3go)
88 (3ho)
99 (3io)
80 (3jo)
83 (3ko)
96 (3lo)
91 (3mo)
88 (3no)
97 (R)
98 (R)
97 (R)
97 (R)
95 (R)
97 (R)
97 (R)
98 (R)
97 (R)
92 (R)
94 (R)
99 (R)
97 (R)
92 (R)
4-MeC6H4 (1b)
3-MeC6H4 (1c)
2-MeC6H4 (1d)
4-MeOC6H4 (1e)
4-AcOC6H4 (1f)
4-ClC6H4 (1g)
4-CF3C6H4 (1h)
2-Naphthyl (1i)
Me (1j)
rhodium/(R)-DTBM-segphos catalyst giving the addition
products in high yields with high enantioselectivity.
This work was supported by a Grant-in-Aid for Scientific
Research (S) (19105002) from the MEXT, Japan. We
thank Takasago International Corporation for the gift of
(R)-DTBM-segphos.
9
10
11
12
13
14
Et (1k)
iPr (1l)
Cyclohexyl (1m)
Notes and references
4-MeOC6H4CH2OCH2 (1n) 48
1 For reviews, see: (a) B. M. Trost and A. H. Weiss, Adv. Synth.
Catal., 2009, 351, 963; (b) S. Fujimori, T. F. Knopfel, P. Zarotti,
a
Reaction conditions: [Rh(OAc)(C2H4)2]2 (5 mol% of Rh),
(R)-DTBM-segphos (5.5 mol%), 1 (0.20 mmol), 2o (0.40 mmol),
¨
T. Ichikawa, D. Boyall and E. M. Carreira, Bull. Chem. Soc. Jpn.,
2007, 80, 1635; (c) L. Zani and C. Bolm, Chem. Commun., 2006,
4263; (d) P. G. Cozzi, R. Hilgraf and N. Zimmermann, Eur. J. Org.
Chem., 2004, 4095; (e) C. Wei, Z. Li and C.-J. Li, Synlett, 2004,
1472; (f) L. Pu, Tetrahedron, 2003, 59, 9873; (g) D. E. Frantz,
b
c
1,4-dioxane (0.4 mL) at 80 1C. Isolated yield. Determined by HPLC
analysis. The absolute configuration of 3fo was determined to be R
(Scheme 2). For others, they were assigned by analogy with entry 6.
R. Fassler, C. S. Tomooka and E. M. Carreira, Acc. Chem. Res.,
¨
2000, 33, 373.
dimerization (entries 4 and 5). In the reaction of phenylacetylene
(2r), the formation of the corresponding addition product was
not observed (entry 6).
2 (a) B. M. Trost, Science, 1991, 254, 1471; (b) B. M. Trost, Angew.
Chem., Int. Ed. Engl., 1995, 34, 259; (c) B. M. Trost, M. T. Sorum,
C. Chan, A. E. Harms and G. Ruhter, J. Am. Chem. Soc., 1997,
119, 698.
¨
Table 2 summarizes the results obtained for the reactions of
several nitroalkenes 1 with (triisopropylsilyl)acetylene (2o).
The addition to b-nitrostyrenes substituted with a methyl
group at para- (1b), meta- (1c), and ortho-position (1d) on
the benzene ring all gave the corresponding addition products
with high enantioselectivities (entries 2–4). The present catalytic
asymmetric alkynylation was also successful for nitroalkenes
substituted with aromatic groups bearing methoxy (1e), acetoxy
(1f), chloro (1g), and trifluoromethyl (1h), and with 2-naphthyl
group (1i) giving the corresponding addition products
(3eo–3io) with over 95% ee (entries 5–9). Nitroalkenes
substituted with primary alkyl groups, methyl (1j) and ethyl
(1k), secondary alkyl groups, isopropyl (1l) and cyclohexyl
(1m), and a functionalized alkyl group (1n) are also good
substrates to give the corresponding addition products 3jo–3no
in high yields with high enantioselectivity (entries 10–14).18
The b-alkynylated nitroalkanes obtained here with high
enantioselectivity are readily converted into b-ethynyl
alkylamines without loss of enantiomeric purity (Scheme 2).
For example, deacetylation of 3fo followed by reduction of the
nitro group into amino by treatment with Zn/ClSiMe3 in
ethanol,19 and desilylation gave b-ethynyltyramine 4 (80%
yield as 4ÁHCl),20 which is an inhibitor of dopamine b-hydro-
xylase.21 The absolute configuration of 3fo was determined to
be R-(À) by correlation with (S)-4ÁHCl ([a]2D0 À15.3 (c 1.00,
DMF) for 97% ee (S); lit.21b [a]2D5 À17.1 (c 1.5, DMF) for
(S)-4ÁHCl).
3 Ru: (a) M. Picquet, C. Bruneau and P. H. Dixneuf, Tetrahedron,
1999, 55, 3937; (b) S. Chang, Y. Na, E. Choi and S. Kim, Org.
Lett., 2001, 3, 2089; (c) T. Nishimura, Y. Washitake,
Y. Nishiguchi, Y. Maeda and S. Uemura, Chem. Commun., 2004,
1312; (d) T. Nishimura, Y. Washitake and S. Uemura, Adv. Synth.
Catal., 2007, 349, 2563; Rh: (e) G. I. Nikishin and I. P. Kovalev,
Tetrahedron Lett., 1990, 31, 7063; (f) R. V. Lerum and
J. D. Chisholm, Tetrahedron Lett., 2004, 45, 6591; Pd:
(g) L. Chen and C.-J. Li, Chem. Commun., 2004, 2362.
4 (a) T. F. Knopfel and E. M. Carreira, J. Am. Chem. Soc., 2003,
¨
¨
125, 6054; (b) T. F. Knopfel, D. Boyall and E. M. Carreira, Org.
Lett., 2004, 6, 2281; (c) S. Fujimori and E. M. Carreira, Angew.
Chem., Int. Ed., 2007, 46, 4964.
5 For examples of catalytic enantioselective addition of pre-prepared
alkynylmetal reagents to alkenes, see: (a) Y.-S. Kwak and
E. J. Corey, Org. Lett., 2004, 6, 3385; (b) O. V. Larionov and
E. J. Corey, Org. Lett., 2010, 12, 300; (c) T. R. Wu and
J. M. Chong, J. Am. Chem. Soc., 2005, 127, 3244; (d) S. Crotti,
F. Bertolini, F. Macchia and M. Pineschi, Chem. Commun., 2008,
3127.
6 For an example of nickel-catalyzed asymmetric alkynylation of
conjugated dienes, see: M. Shirakura and M. Suginome, Angew.
Chem., Int. Ed., 2010, 49, 3827.
7 T. F. Knopfel, P. Zarotti, T. Ichikawa and E. M. Carreira, J. Am.
¨
Chem. Soc., 2005, 127, 9682.
8 (a) T. Nishimura, X.-X. Guo, N. Uchiyama, T. Katoh and
T. Hayashi, J. Am. Chem. Soc., 2008, 130, 1576;
(b) T. Nishimura, T. Sawano and T. Hayashi, Angew. Chem.,
Int. Ed., 2009, 48, 8057.
9 Forrecent examples of rhodium-catalyzed asymmetric alkynyla-
tion, see: (a) E. Fillion and A. K. Zorzitto, J. Am. Chem. Soc.,
2009, 131, 14608; (b) P. K. Dhondi, P. Carberry, L. B. Choi and
J. D. Chisholm, J. Org. Chem., 2007, 72, 9590; (c) H. Nishiyama
and J. Ito, Chem. Commun., 2010, 46, 203.
In summary, we have succeeded in a conjugate addition
of (triisopropylsilyl)acetylene to nitroalkenes by use of a
10 For a review, see: O. M. Berner, L. Tedeschi and D. Enders, Eur. J.
Org. Chem., 2002, 1877.
c
6838 Chem. Commun., 2010, 46, 6837–6839
This journal is The Royal Society of Chemistry 2010