P. Lu et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6918–6921
6921
(2 equiv, 0.32 mL, 4.0 mmol). The cold solution was then added slowly to a
ꢀ78 °C solution of N-(3-hydroxypropyl)-amino acid esters (4a–i, 1 equiv,
2 mmol) and triethylamine (6.3 equiv, 1.8 mL, 12.6 mmol) in CH2Cl2 (20 mL) at
dipivoxil displayed poor stability with a half-life of 45 min in hu-
man plasma and microsomes. Although (RP,S)-7c and (SP,S)-7c have
similar stability in plasma, the hydrolysis rate of isomer (SP,S)-7c
(t1/2 = 3.6 h) in human microsomes was faster than that of (RP,S)-
7c (t1/2 >6 h). Moreover, diastereomer (SP,S)-7c was more stable
than adefovir dipivoxil in human blood and liver microsomes.
The possible metabolic pathway for prodrug (SP,S)-7c was
investigated further in human microsomes (Fig. 2). Prodrug
(SP,S)-7c was incubated with human liver microsomes for 6 h and
the metabolites were identified with LC–MS. Oxidation of the car-
bon adjacent to the amide led to the intermediate 8 (LC–MS peak at
12.5 min with an observed mass of 443). Subsequent hydrolysis of
8 afforded the second intermediate 9, which underwent a facile
b-elimination to produce the third intermediate 11 (LC–MS peak
at 17.1 min with an observed mass of 387) and acrolein 10, a
known glutathione scavenger.17 Furthermore, 11 was hydrolyzed
to the parent compound PMEA, which underwent subsequent
phosphorylation to form triphosphate as an HBV polymerase
inhibitor.18 The parent compound PMEA appeared in LC–MS at
4.1 min, which was confirmed by comparison with the authentic
sample. Compound 11 was found to be the major metabolite in hu-
man microsomes.
In summary, we described the synthesis and structure–activity
relationships of a novel class of oxazaphosphorine prodrugs of
PMEA, as highly potent anti-HBV agents with excellent stability
in human plasma. The possible metabolic pathway in human
microsomes for the most potent prodrug 7c was described. The re-
sults suggest that oxazaphosphorine prodrugs of PMEA have signif-
icant potential for treatment of HBV infection. A further study of
the prodrug (SP,S)-7c is underway in our laboratory and will be re-
ported in due course.
a
rate that maintained the internal reaction temperature at ꢀ78 °C. The
reaction mixture was warmed to 0 °C for 2 h, washed with water (3 ꢁ 20 mL),
and the organic layer was dried over MgSO4 and concentrated under reduced
pressure. The resultant residue was purified by chromatography (CH2Cl2/
MeOH, 20:1) to give N-protected oxazaphosphorine prodrugs of PMEA as white
foams.The above prepared foam was dissolved in ethanol (30 mL). Acetic acid
(2.2 equiv, 0.25 mL, 4.4 mmol) was added, and the solution was heated at
reflux for 2 h. The reaction mixture was cooled to room temperature and
concentrated under reduced pressure. The resultant residue was purified by
chromatography (CH2Cl2/MeOH, 20:1) to give 6a–i as colorless oils.
The oils obtained were redissolved in acetonitrile (10 mL) and treated with
appropriate fumaric acid (1 equiv). After being refluxed for 2 h, the solution
was allowed to cool to room temperature for 2 h. The solid was filtered, rinsed
with ether (5 mL) and dried to give 7a–i fumaric acid salts as crystalline solids.
The first-eluting diastereoisomer (SP,S)-7g: mp 128–129 °C. ½aꢂD = ꢀ3.2° (c
0.340, MeOH). 1H NMR (CD3OD, 300 MHz) d 8.21 (s, 1H, 20-H), 8.16 (s, 1H, 80-H),
6.75 (s, 2H, CH@CH), 4.46 (m, 2H, NCH2), 4.23 (m, 2H, OCH2), 3.84–4.08 (m, 6H,
OCH2P + OCH2 + OCH2CH3), 3.53 (t, J = 10.2 Hz, 1H, NCHCO), 3.06 (m, 2H,
NCH2), 2.17 (m, 1H, CHH), 1.96 (m, 1H, CHH), 1.67 (m, 1H, CH(CH3)2), 1.18 (t,
J = 7.2 Hz, 3H, OCH2CH3), 0.94 (d, J = 6.6 Hz, 3H, CH3), 0.86 (d, J = 6.6 Hz, 3H,
CH3). 13C NMR (CD3OD, 75 MHz) d 172.2 (2C), 168.9, 157.5, 153.8, 151.2, 143.7,
135.8 (2C), 120.4, 72.7, 71.1, 69.5, 68.0, 65.0, 62.4, 45.1, 43.0, 28.0, 27.5, 20.1,
19.7, 15.0. 31P NMR (CD3OD, 120 MHz) d 21.77. MS (ESI) m/z 441.3 [M+H]+,
463.3 [M+Na]+. HRMS calcd for C18H29N6O5P [M+Na]+ 463.1824, found
463.1835.
The second-eluting diastereoisomer (RP,S)-7g: mp 231–232 °C. ½aꢂD = ꢀ18.0° (c
0.300, MeOH). 1H NMR (CD3OD, 300 MHz) d 8.21 (s, 1H, 20-H), 8.19 (s, 1H, 80-H),
6.75 (s, 2H, CH@CH), 4.50 (m, 2H, NCH2), 4.08–4.29 (m, 4H, OCH2 + OCH2CH3),
3.77–3.94 (m, 4H, OCH2P + CH2O), 3.53 (t, J = 9.9 Hz, 1H, NCHCO), 3.40 (m, 2H,
NCHH), 3.05 (m, 2H, NCHH), 1.96 (m, 2H, CH2), 1.62–1.89 (m, 1H, CH(CH3)2),
1.26 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.82 (d, J = 6.6 Hz, 3H, CH3), 0.65 (d, J = 6.6 Hz,
3H, CH3). 13C NMR (CD3OD, 75 MHz) d 173.8 (2C), 168.8, 157.4, 153.5, 151.3,
143.8, 135.8 (2C), 120.4, 72.7, 71.4, 69.4, 67.8, 65.4, 62.3, 45.2, 42.9, 29.3, 27.9,
20.2, 20.1, 14.9. 31P NMR (CD3OD, 120 MHz) d 22.02. MS (ESI) m/z 441.3
[M+H]+, 463.3 [M+Na]+. HRMS calcd for C18H29N6O5P [M+Na]+ 463.1838, found
463.1835.
The first-eluting diastereoisomer (RP,R)-7i: mp 176–177 °C. ½aꢂD = +2.9° (c
0.340, MeOH). 1H NMR (CD3OD, 300 MHz) d 8.21 (s, 1H, 20-H), 8.16 (s, 1H, 80-H),
6.75 (s, 2H, CH@CH), 4.46 (m, 2H, NCH2), 4.23 (m, 2H, OCH2), 3.84–4.08 (m, 6H,
OCH2P + OCH2 + OCH2CH3), 3.53 (t, J = 10.2 Hz, 1H, NCHCO), 3.00–3.13 (m, 2H,
NCH2), 2.17 (m, 1H, CHH), 2.01 (m, 1H, CHH), 1.67 (m, 1H, CH(CH3)2), 1.18 (t,
J = 7.2 Hz, 3H, OCH2CH3), 0.94 (d, J = 6.6 Hz, 3H, CH3), 0.86 (d, J = 6.6 Hz, 3H,
CH3). 13C NMR (CD3OD, 75 MHz) d 172.2 (2C), 168.9, 157.5, 153.8, 151.2, 143.7,
135.8 (2C), 120.4, 72.7, 71.1, 69.5, 68.0, 65.0, 62.4, 45.1, 43.0, 28.0, 27.5, 20.1,
19.7, 15.0. 31P NMR (CD3OD, 120 MHz) d 21.76. MS (ESI) m/z 441.3 [M+H]+,
463.3 [M+Na]+. HRMS calcd for C18H29N6O5P [M+Na]+ 463.1834, found
463.1835.
References and notes
1. Malik, A.; Lee, W. Ann. Intern. Med. 2000, 132, 723.
2. (a) Wong, D. K. H.; Cheung, A. M.; O’Rourke, K.; Naylor, C. D.; Detsky, A. S.;
Heathcote, J. Ann. Intern. Med. 1993, 119, 312; (b) Lok, A. S.; Hussain, M.;
Cursano, C.; Margotti, M.; Gramenzi, A.; Grazi, G. L.; Jovine, E.; Benardi, M.;
Andreone, P. Hepatology 2000, 32, 1145; (c) Kim, J. W.; Park, S. H.; Louie, S. G.
Ann. Pharmacother. 2006, 40, 472.
3. (a) De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.;
Holy, A. Antiviral Res. 1987, 8, 261; (b) Yokota, T.; Mochizuki, S.; Konno, K.;
Mori, S.; Shigheta, S.; De Clercq, E. Antimicrob. Agents Chemother. 1991, 35, 394.
4. Ulrika, E.; John, M. H.; Jae-Seung, K.; Stefanie, M.; Paul, K.; Katherine, Z. B.; Julie,
M. B.; John, C. D.; Boris, A. K.; Charles, E. M. Bioorg. Med. Chem. Lett. 2007, 17,
583.
5. (a) Krise, J. P.; Stella, V. J. Adv. Drug Delivery Rev. 1996, 19, 287; (b) Schultz, C.
Bioorg. Med. Chem. 2003, 11, 885.
6. (a) Chen, Z.; Zheng, M. Exp. Opin. Ther. Patents 2005, 15, 1027; (b) Douglas, H. S.;
Kevin, T. B.; Sanjay, K. N. Am. J. Physiol. Renal Physiol. 2001, 281, F197.
7. Speit, G.; Schutz, P.; Merk, O. Mutagenesis 2000, 15, 85.
The second-eluting diastereoisomer (SP,R)-7i: obtained as a white solid. mp
136–137 °C. ½aꢂD
= +31.1° (c 0.325, MeOH). 1H NMR (CD3OD, 300 MHz) d 8.21
(s, 1H, 20-H), 8.19 (s, 1H, 80-H), 6.75 (s, 2H, CH@CH), 4.50 (m, 2H, NCH2), 4.08–
4.29 (m, 4H, OCH2 + OCH2CH3), 3.77–3.94 (m, 4H, OCH2P + CH2O), 3.53 (t,
J = 9.9 Hz, 1H, NCHCO), 3.41 (m, 2H, NCHH), 2.95 (m, 2H, NCHH), 1.96 (m, 2H,
CH2), 1.62–1.89 (m, 1H, CH(CH3)2), 1.26 (t, J = 7.2 Hz, 3H, OCH2CH3), 0.82 (d,
J = 6.6 Hz, 3H, CH3), 0.65 (d, J = 6.6 Hz, 3H, CH3). 13C NMR (CD3OD, 75 MHz) d
173.8 (2C), 168.8, 157.4, 153.5, 151.3, 143.8, 135.8 (2C), 120.4, 72.7, 71.4, 69.4,
67.8, 65.4, 62.3, 45.2, 42.9, 29.3, 27.9, 20.2, 20.1, 14.9. 31P NMR (CD3OD,
120 MHz) d 21.99. MS (ESI) m/z 441.3 [M+H]+, 463.3 [M+Na]+. HRMS calcd for
C18H29N6O5P [M+Na]+ 463.1815, found 463.1835.
13. (a) Pikul, S.; Dunham, K. L. M.; Almstead, N. G.; De, B.; Natchus, M. G.;
Anastasio, M. V.; McPhail, S. J.; Snider, C. E.; Taiwo, Y. O.; Chem, L.; Dunaway, C.
M.; Gu, F.; Mieling, G. E. J. Med. Chem. 1999, 42, 87; (b) Sawa, M.; Kiyoi, T.;
Kurokawa, K.; Kumihara, H.; Yamamoto, M.; Miyasaka, T.; Ito, Y.; Hirayama, R.;
Inoue, T.; Kirii, Y.; Nishiwaki, E.; Ohmoto, H.; Maeda, Y.; Ishibushi, E.; Inoue, Y.;
Yoshino, K.; Kondo, H. J. Med. Chem. 2002, 45, 919; (c) Mosbo, J.; Verkade, J. G.
A. J. Org. Chem. 1977, 42, 1549; (d) Cooper, D. B.; Harrison, J. M.; Inch, T. D.;
Lewis, G. J. J. Chem. Soc., Perkin Trans. 1 1974, 1049.
14. Mary, A. S.; Cheng, M. L.; George, A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 1005.
15. Fu, X. Z.; Jiang, S. H.; Li, C.; Xin, J.; Yang, Y. S.; Ji, R. Y. Bioorg. Med. Chem. Lett.
2007, 17, 465.
16. (a) Farquhar, D.; Srivastva, D. N.; Kattesch, N. J.; Saunders, P. P. J. Pharm. Sci.
1983, 72, 324; (b) Farquhar, D.; Khan, S.; Srivastva, D. N.; Saunder, P. P. J. Med.
Chem. 1994, 37, 3902; (c) Dang, Q.; Brown, B. S.; van Poelje, P. D.; Colby, T. C.;
Erion, M. D. Bioorg. Med. Chem. Lett. 1999, 9, 1505.
8. Lefebvre, I.; Perigaud, C.; Pompon, A.; Aubertin, A. M.; Girarder, J. L.; Kirn, A.;
Gosselin, G.; Imbach, J. L. J. Med. Chem. 1995, 38, 3941.
9. McGuigan, C.; Pathirana, R. N.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1993, 36,
1048.
10. Sorensen, M. D.; Blæhr, L. K. A.; Christensen, M. K.; Hoyer, T.; Latini, S.; Hjarnaa,
P. V.; Björkling, F. Bioorg. Med. Chem. 2003, 11, 5461.
11. (a) Erion, M. D.; Reddy, K. R.; Boyer, S. H.; Matelich, M. C.; Gomez-Galeno, J.;
Lemus, R. H.; Ugarkar, B. G.; Colby, T. J.; Schanzer, J.; Van Poelje, P. D. J. Am.
Chem. Soc. 2004, 126, 5154; (b) Erion, M. D.; Van Poelje, P. D.; Mackenna, D. A.;
Colby, T. J.; Montag, A. C.; Fujitaki, J. M.; Linemeyer, D. L.; Bullough, D. A. J.
Pharmacol. Exp. Ther. 2005, 46, 4321; (c) Hecker, S. J.; Reddy, R.; Van Poelje, P.
D.; Sun, Z.; Varkhedkar, W.; Huang, V.; Reddy, M. V.; Fujitaki, J. M.; Olsen, D. B.;
Koeplinger, K. A.; Boyer, S. H.; MacCoss, D. L.; Linemeyer, M.; Erion, M. D. J. Med.
Chem. 2007, 50, 3891.
12. Experimental details and characterization data. Standard procedure: preparation
of oxazaphosphorine prodrugs of PMEA 7a–i: Oxalyl chloride (3.5 equiv,
0.60 mL, 7.0 mmol) was added slowly to a slurry of PMEA (1.0 equiv, 2.0 mmol)
and N,N-diethylformamide (1.1 equiv, 0.24 mL, 2.2 mmol) in CH2Cl2 (20 mL),
and the resulting mixture was refluxed for 3 h. The reaction was cooled to
room temperature and concentrated in vacuo. The resultant yellow foam was
dissolved in CH2Cl2 (20 mL), cooled to 0 °C, and treated slowly with pyridine
17. Banijamali, A. R.; Xu, Y.; Dematteo, V.; Strunk, R. J.; Sumner, S. J. J. Agric. Food.
Chem. 2000, 48, 4693.
18. (a) Balzarini, J.; Hao, Z.; Herdewjin, P.; Johns, D.; De Clercq, E. Proc. Natl. Acad.
Sci. U.S.A. 1991, 88, 1499; (b) Merta, A.; Votruba, I. J. Biochem. Pharmacol. 1992,
44, 2067; (c) Robbins, B.; Greenhaw, J.; Connelly, M.; Fridland, A. Antimicrob.
Agents Chemother. 1995, 39, 2304.