1974 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 7
Qian et al.
(14) Hussain, R. F.; Nourin, A. M. E.; Oliver, R. T. D. A new approach
for measurement of cytotoxicity using colorimetric assay. J. Immunol.
Methods 1993, 160, 89–96.
(15) Singh, N.; McCoy, M. T.; Tice, R. R.; Schneider, E. L. A simple
technique for quantitation of low levels of DNA damage in individual
cells. Exp. Cell Res. 1988, 175, 184–191.
(16) (a) Stoewe, R.; Prutz, W. A. Copper-catalyzed DNA damage by
ascorbate and hydrogen peroxide: kinetics and yield. Free Radical
Biol. Med. 1987, 3, 97–105. (b) Cai, L.; Tsiapalis, G.; Cherian, M. G.
Protective role of zinc-metallothionein on DNA damage in vitro by
ferric nitrilotriacetate (Fe-NTA) and ferric salts. Chem. Biol. Interact.
1998, 115, 141–151.
(17) Fisher, D. E. Apoptosis in cancer therapy: crossing the threshold. Cell
1994, 78, 539–542.
(18) Brown, D. G.; Sun, X. M.; Cohen, G. W. Dexamethasone-induced
apoptosis involves cleavage of DNA to large fragments prior to
internucleosomal fragmentation. J. Biol. Chem. 1993, 268, 3037–2039.
(19) Gong, J. P.; Traganos, F.; Darzynkiewicz, Z. A selective procedure
for DNA extraction from apoptotic cells applicable for gel electro-
phoresis and flow cytometry. Anal. Biochem. 1994, 218, 314–318.
(34) Yoshida, Y.; Furuta, S.; Niki, E. Effects of metal chelating agents on
the oxidation of lipids induced by copper and iron. Biochim. Biophys.
Acta 1993, 1210, 81–88.
(35) Carpentieri, U.; Myers, J.; Thorpe, L.; Daeschner III, C. W.; Haggard,
M. E. Copper, zinc, and iron in normal and leukemic lymphocytes
from children. Cancer Res. 1986, 46, 981–984.
(36) Hider, B. C.; Liu, Z. D.; Khodr, H. H. Metal chelation of polyphenols.
Methods Enzymol. 2001, 335, 190–203.
(37) Schweigert, N.; Hunziker, R.; Escher, B. J.; Eggen, R. I. L. Acute
toxicity of (chloro-) catechol and (chloro-) catechol-copper combina-
tions in Escherichia coil corresponds to the membrane toxicity in vitro.
EnViron. Toxicol. Chem. 2001, 20, 239–247.
(38) Patel, K. B.; Wilson, R. L. Semiquinone free radicals and oxygen.
Pulse radiolysis study of one electron transfer equilibria. J. Chem.
Soc., Faraday Trans. 1973, 69, 814–825.
(39) Murata, M.; Sugiera, M.; Sonokawa, Y.; Shimamura, T.; Homma, S.
Properties of chlorogenic acid quinone: relationship between browning
and the formation of hydrogen peroxide from a quinone solution.
Biosci. Biotechnol. Biochem. 2002, 66, 2525–2530.
(40) (a) Samuni, A. M.; Chuang, E. Y.; Krishna, M. C.; Stein, W.; DeGraff,
W.; Russo, A.; Mitchell, J. B. Semiquinone radical intermediate in
catecholic estrogen-mediated cytotoxic and mutagenesis: chemopre-
vention strategies with antioxidants. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 5390–5395. (b) Haque, M. E.; Asanuma, M.; Higashi, Y.;
Miyazaki, I.; Tanaka, K. I.; Ogawa, N. Apoptosis-inducing neurotox-
icity of dopamine and its metabolites via reactive quinone generation
in neuroblastoma cells. Biochim. Biophys. Acta 2003, 1619, 39–52.
(41) Cai, Y. J.; Wei, Q. Y.; Fang, J. G.; Yang, L.; Liu, Z.-L.; Wyche, J.-
H.; Han, Z. The 3,4-dihydroxyl groups are important for trans-
resveratrol analogs to exhibit enhanced antioxidant and apoptotic
activities. Anticancer Res. 2004, 24, 999–1002.
(42) Wang, Y.; Wang, B.; Cheng, J.; Yang, L.; Liu, Z.-L.; Balan, K.;
Pantazis, P.; Wyche, J. H.; Han, Z. FADD-dependent apoptosis
induction in jurkat leukemia T-cells by the resveratrol analogue, 3,4,5-
trihydroxy-trans-stilbene. Biochem. Pharmacol. 2005, 69, 249–254.
(43) Lozano, C.; Julia´, L.; Jime´nez, A.; Tourin˜o, S.; Centelles, J. J.;
Cascante, M.; Torres, J. L. Electron-transfer capacity of catechin
derivatives and influence on the cell cycle and apoptosis in HT29 cells.
FEBS J. 2006, 273, 2475–2486.
(20) Sporn, M. B.; Suh, N. Chemoprevention: an essential approach to
controlling cancer. Nat. ReV. Cancer 2002, 2, 537–543.
(21) (a) Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals.
Nat. ReV. Cancer 2003, 3, 768–780. (b) Collins, A. R. Antioxidant
intervention as a route to cancer prevention. Eur. J. Cancer 2005, 41,
1923–1930. (c) Pan, M.-H.; Ghai, G.; Ho, C.-T. Food bioactives,
apoptosis, and cancer. Mol. Nutr. Food Res. 2008, 52, 43–52.
(22) Chemoprevention Working Group. Prevention of cancer in the next
millennium: report of the Chemoprevention Working Group to the
American Association for Cancer Research. Cancer Res. 1999, 59,
4743-4758.
(23) Seifried, H. E.; McDonald, S. S.; Anderson, D. E.; Greenwald, P.;
Milner, J. A. The antioxidant conundrum in cancer. Cancer Res. 2003,
63, 4295–4298.
(24) (a) Azzi, A.; Davies, K. J. A.; Kelly, F. Free radical biologysterminology
and critical thinking. FEBS Lett. 2004, 558, 3–6. (b) Howes, R. P.
The free radical fantasy: a panoply of paradoxes. Ann. N.Y. Acad.
Sci. 2006, 1067, 22–26.
(44) (a) Satoh, K.; Kadofuku, T.; Sakagami, H. Copper, but not iron,
enhances apoptosis-inducing activity of antioxidant. Anticancer Res.
1997, 17, 2487–2490. (b) Yu, H.-N.; Yin, J.-J.; Shen, S.-R. Growth
inhibition of prostate cancer cells by epigallocatechin gallate in the
presence of Cu2+. J. Agric. Food Chem. 2004, 52, 462–466. (c) Gupte,
A.; Mumper, R. J. Copper chelation by D-penicillamine generates
reactive oxygen species that are cytotoxic to human leukemia and
breast cancer cells. Free Radical Biol. Med. 2007, 43, 1271–1278.
(45) (a) Chen, Q.; Espey, M. G.; Sun, A. Y.; Pooput, C.; Krik, K. L.;
Krishna, M. C.; Khosh, D. B.; Drisko, J.; Levine, M. Pharmacologic
doses of ascorbate act as a prooxidant and decrease growth of
aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. U.S.A.
2008, 105, 11105–11109. (b) Chen, Q.; Espey, M. G.; Sun, A. Y.;
Lee, J.-H.; Krishna, M. C.; Shacter, E.; Choyke, P. L.; Pooput, C.;
Krik, K. L.; Buettner, G. R.; Levine, M. Ascorbate in pharmacologic
concentrations selectively generates ascorbate radical and hydrogen
peroxide in extracellular fluid in ViVo. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 8749–8754.
(25) (a) Nakazato, T.; Ito, K.; Ikeda, Y.; Kizaki, M. Green tea component,
catechin, induce apoptosis of human malignant B cells via production
of reactive oxygen species. Clin. Cancer Res. 2005, 11, 6040–6049.
(b) Pan, M.-H.; Hsieh, M.-C.; Kuo, J.-M.; Lai, C.-S.; Wu, H.; Sang,
S.; Ho, C.-T. 6-Shogaol induces apoptosis in human colorectal
carcinoma cells via ROS production, caspase activation, and GADD
153 expression. Mol Nutr. Food Res. 2008, 52, 527–537. (c) Javvadi,
P.; Segan, A. T.; Tuttle, S. W.; Koumenis, C. The chemopreventive
agent curcumin is a potent radiosensitizer of human cervical tumor
cells via increased reactive oxygen species production and overacti-
vation of the mitogen-activated protein kinase pathway. Mol. Phar-
macol. 2008, 73, 1491–1501.
(26) (a) Chen, Z. P.; Schell, J. B.; Ho, C. T.; Chen, K. Y. Green tea
epigallocatechin gallate shows a pronounced growth inhibitory effect
on cancerous cells but not on their normal counterparts. Cancer Lett.
1998, 129, 173–179. (b) Cle´ment, M. V.; Hirpara, J. L.; Chawdhury,
S.-W.; Pervaiz, S. Chemopreventive agent resveratrol, a natural product
from grapes, triggers CD95 signaling-dependent apoptosis in human
tumor cells. Blood 1998, 92, 996–1002.
(27) Foti, M.; Ruberto, G. Kinetic solvent effects on phenolic antioxidant
determined by spectrophotometric measurements. J. Agric. Food Chem.
2001, 49, 342–348.
(28) Wright, J. S.; Johnson, E. R.; Dilabio, G. A. Predicting the activity of
phenolic antioxidants: theoretical method, analysis of substituent
effects, and application to major families of antioxidant. J. Am. Chem.
Soc. 2001, 123, 1173–1183.
(29) Sugumaran, M. Oxidative chemistry of 1,2-dehydro-N-acetyldopam-
ines: direct evidence for the formation of 1,2-dehyo-N-acetyldopamine
quinone. Arch. Biochem. Biophys. 2000, 378, 404–410.
(46) Ohyama, M.; Tanaka, T.; Ito, T.; Linuma, M.; Bastow, K. F.; Lee,
K.-H. Antitumor agents 200. Cytotoxicity of naturally occurring
resveratrol oligomers and their acetate derivatives. Bioorg. Med. Chem.
Lett. 1999, 9, 3057–3060.
(47) (a) Thakkar, K.; Geahlen, R. L.; Cushman, M. Synthesis and protein-
tyrosine kinase inhibitory activity of polyhydroxylated stilbene
analogues of piceatannol. J. Med. Chem. 1993, 36, 2950–2955. (b)
Bachelor, F. W.; Loman, A. A.; Snowdon, I. R. Synthesis of pinosylvin
and related heartwood stilbenes. Can. J. Chem. 1970, 48, 1554–1557.
(48) Cittadini, A.; Bossi, D.; Longhi, G.; Terranova, T. Energy metabolism
of isolated rat thymus cells. Mol. Cell. Biochem. 1975, 8, 49–57.
(49) Doulias, P.; Barbouti, A.; Galaris, G.; Ischiropoulos, H. SIN-1-induced
DNA damage in isolated human peripheral blood lymphocytes as
assessed by single cell gel electrophoresis (comet assay). Free Radical
Biol. Med. 2001, 30, 679–685.
(50) McCarthy, P. J.; Sweetman, S. F.; McKenna, P. G.; McKelvey-Martin,
V. J. Evaluation of manual and image analysis quantitation of DNA
damage in the alkaline comet assay. Mutagenesis 1997, 12, 209–214.
(51) Nicoletti, I.; Migliorati, G.; Pagliacci, M. G.; Grignani, F.; Riccardi,
C. A rapid and simple method for measuring thymocyte apoptosis by
propidium iodide staining and flow cytometry. J. Immunol. Methods
1991, 139, 271–279.
(30) Davies, R. The synthesis and isolation of caffeoquinone and caffeo-
quinone methyl ester. Tetrahedron Lett. 1976, 17, 313–314.
(31) Rosenau, T.; Potthast, A.; Elder, T.; Kosma, P. Stabilization and first
direct spectroscopic evidence of the o-quinone methide derived from
vitamin E. Org. Lett. 2002, 4, 4285–4288.
(32) Lo´pez-Nicola´s, J. M.; Garc´ıa-Carmona, F. Aggregation State and pKa
values of (E)-resveratrol as determined by fluorescence spectroscopy
and UV-visible absorption. J. Agric. Food Chem. 2008, 56, 7600–
7605.
(33) Agarwal, K.; Sharma, A.; Talukder, G. Effects of copper on mam-
malian cell components. Chem. Biol. Interact. 1989, 69, 1–16.
JM8015415