Communication
Scheme 6. Syntheses of biologically active 1,2,4-oxadiazole derivatives.
Org. Biomol. Chem. 2009, 7, 4337; d) A. Pace, S. Buscemi, N. Vivona, Org.
Prep. Proced. Int. 2005, 37, 447; e) L. A. Kayukova, Pharm. Chem. J. 2005,
39, 539.
For biologically active compounds, see: a) M. Ispikoudi, M. Amvrazis, C.
Kontogiorgis, A. E. Koumbis, K. E. Litinas, D. Hadjipavlou-Litina, K. C. Fyl-
aktakidou, Eur. J. Inorg. Chem. 2010, 45, 5635; b) N. P. Rai, V. K. Narayanas-
wamy, T. Govender, B. K. Manuprasad, S. Shashikanth, P. N. Arunachalam,
Eur. J. Med. Chem. 2010, 45, 2677.
For pharmaceuticals, see: a) H.-Z. Zhang, S. Kasibhatla, J. Kuemmerle, W.
Kemnitzer, K. Ollis-Mason, L. Qiu, C. Crogan-Grundy, B. Tseng, J. Drewe,
S. X. Cai, J. Med. Chem. 2005, 48, 5215; b) Z. Li, W. Chen, J. J. Hale, C. L.
Lynch, S. G. Mills, R. Hajdu, C. A. Keohane, M. J. Rosenbach, J. A. Milligan,
G. J. Shei, G. Chrebet, S. A. Parent, J. Bergstrom, D. Card, M. Forrest, E. J.
Quackenbush, L. A. Wickham, H. Vargas, R. M. Evans, H. Rosen, S. Man-
dala, J. Med. Chem. 2005, 48, 6169.
For functional materials, see: a) Y.-J. Chen, S.-C. Yang, C.-C. Tsai, K.-C.
Chang, W.-H. Chuang, W.-L. Chu, V. Kovalev, W.-S. Chung, Chem. Asian J.
2015, 10, 1025; b) O. Francescangeli, V. Stanic, S. I. Torgova, A. Strigazzi,
N. Scaramuzza, C. Ferrero, I. P. Dolbnya, T. M. Weiss, R. Berardi, L. Muccioli,
S. Orlandi, C. Zannoni, Adv. Funct. Mater. 2009, 19, 2592.
a) J. L. Buchanan, C. B. Vu, T. J. Merry, E. G. Corpuz, S. G. Pradeepan, U. N.
Mani, M. Yang, H. R. Plake, V. M. Varkhedkar, B. A. Lynch, I. A. MacNeil,
K. A. Loiacono, C. L. Tiong, D. A. Holt, Bioorg. Med. Chem. Lett. 1999, 9,
2358; b) S. Borg, R. C. Vollinga, M. Labarre, K. Payza, L. Terenius, K. Luth-
man, J. Med. Chem. 1999, 42, 4331.
For selected examples, see: a) D. Suresh, K. Kanagaraj, K. Pitchumani,
Tetrahedron Lett. 2014, 55, 3678; b) B. Kaboudin, L. Malekzadeh, Tetrahe-
dron Lett. 2011, 52, 6424; c) B. Kaboudin, F. Saadati, Tetrahedron Lett.
2007, 48, 2829; d) K. K. D. Amarasinghe, M. B. Maier, A. Srivastava, J. L.
Grey, Tetrahedron Lett. 2006, 47, 3629.
For selected examples, see: a) S. Kandre, P. R. Bhagat, R. Sharma, A.
Gupte, Tetrahedron Lett. 2013, 54, 3526; b) J. K. Augustine, V. Akabote,
S. G. Hegde, P. Alagarsamy, J. Org. Chem. 2009, 74, 5640; c) Y. Wang, R. L.
Miller, D. R. Sauer, S. W. Djuric, Org. Lett. 2005, 7, 925; d) M. D. Evans, J.
Ring, A. Schoen, A. Bell, P. Edwards, D. Berthelot, R. Nicewonger, C. M.
Baldino, Tetrahedron Lett. 2003, 44, 9337.
a) K. Hemming, M. N. Khan, P. A. O'Gorman, A. Pitard, Tetrahedron 2013,
69, 1279; b) N. A. Bokach, A. V. Khripun, V. Y. Kukushkin, M. Haukka,
A. J. L. Pombeiro, Inorg. Chem. 2003, 42, 896.
indicates the involvement of intermediate 5 in the proposed
catalytic cycle. When intermediate 8 was subjected to the opti-
mized reaction conditions without ZnI2, the yield of 3aa dra-
matically decreased (45 %), indicating the probable role of ZnI2
during the reductive elimination step or disproportionation of
CuII; yet the role of ZnI2 as a Lewis acid promoting the nucleo-
philic addition cannot be completely ruled out.
To highlight the synthetic utility of this Cu-catalyzed oxida-
tive cyclization, biologically active 1,2,4-oxadiazole derivatives
were synthesized (Scheme 6). The reaction of 2-fluorobenz-
amide (1l) with m-tolunitrile (2g) afforded 3lg in 61 % yield;
this can be converted into ataluren (9),[9a] a drug for the treat-
ment of cystic fibrosis.[15] Recently, Chang and co-workers syn-
thesized and studied the oxadiazole derivative 3pt, a new class
of non-ꢀ-lactam antibiotics that inhibits the penicillin-binding
protein (PBP) 2a.[16] When 4-fluorobenzamide was treated with
2t under optimized reaction conditions, product 3pt was ob-
tained in 54 % yield.
[2]
[3]
[4]
[5]
[6]
[7]
Conclusions
A new method was developed for the synthesis of 1,2,4-oxadi-
azoles by a Cu-catalyzed reaction through a rare oxidative N–O
bond formation, and O2 was used as the sole oxidant, thus
avoiding the synthesis of starting precursors or to use of strong
oxidants, typically required in previous methods. The method
also showed a broad substrate scope and a good tolerance for
diverse functional groups. Considering the ready availability of
stable starting precursors, inexpensive reagents, and the one-
step synthesis, a convenient and highly modular 1,2,4-oxadi-
azole synthesis was developed.
[8]
[9]
a) P. K. Gupta, M. K. Hussain, M. Asad, R. Kant, R. Mahar, S. K. Shukla, K.
Hajela, New J. Chem. 2014, 38, 3062; b) W. Guo, K. Huang, F. Ji, W. Wu,
H. Jiang, Chem. Commun. 2015, 51, 8857.
For selected examples, see: a) F.-L. Zhang, Y.-F. Wang, S. Chiba, Org. Bi-
omol. Chem. 2013, 11, 6003; b) D. Grant, R. Dahl, N. D. P. Cosford, J. Org.
Chem. 2008, 73, 7219; c) K. Itoh, H. Sakamaki, C. A. Horiuchi, Synthesis
2005, 1935.
Acknowledgments
[10]
This research was supported by the Institute for Basic Science
(IBS-R022-D1-2015).
[11]
[12]
a) J. Yuan, C. Liu, A. Lei, Chem. Commun. 2015, 51, 1394; b) M. J. Raihan,
V. Kavala, P. M. Habib, Q.-Z. Guan, C.-W. Kuo, C.-F. Yao, J. Org. Chem. 2011,
76, 424; c) B. J. Stokes, C. V. Vogel, L. K. Urnezis, M. Pan, T. G. Driver, Org.
Lett. 2010, 12, 2884.
For selected examples, see: a) H. Huang, J. Cai, X. Ji, F. Xiao, Y. Chen, G.-
J. Deng, Angew. Chem. Int. Ed. 10.1002/anie.201508076; b) H. Huang, W.
Guo, W. Wu, C.-J. Li, H. Jiang, Org. Lett. 2015, 17, 2894; c) H. Xu, S. Ma, Y.
Xu, L. Bian, T. Ding, X. Fang, W. Zhang, Y. Ren, J. Org. Chem. 2015, 80,
1789; d) B. Bartels, C. G. Bolas, P. Cueni, S. Fantasia, N. Gaeng, A. S. Trita,
Keywords: Copper · Heterocycles · 1,2,4-Oxadiazoles ·
Homogeneous catalysis · Cyclization
[1] For reviews, see: a) A. Pace, S. Buscemi, A. P. Piccionello, I. Pibiri, Adv.
Heterocycl. Chem. 2015, 116, 85–136; b) A. V. Gulevich, A. S. Dudnik, N.
Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084; c) A. Pace, P. Pierro,
Eur. J. Org. Chem. 2016, 438–442
441
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim