C O M M U N I C A T I O N S
Scheme 2. Normal Secondary Kinetic Isotope Effects Demonstrate
That the Proposed Oxocarbenium Intermediate Is Formed in the
Rate-Determining Step
known ability of transition-metal catalysts to accelerate similar
processes18 offers a pathway for future developments to enhance
the chemical yield, substrate scope, and stereochemical outcome.
Acknowledgment. We are grateful to the National Institutes
of Health (GM-079339) and Bristol Myers Squibb for support of
this research. We thank Gary Molander, Noel Ellis, Deidre
Sandrock, and Belgin Canturk for generous donation of potassium
organotrifluoroborates and helpful discussions. We thank George
Furst and Pinguan Zheng for helpful discussions regarding the 11
NMR and KIE studies.
B
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
Scheme 3. Crossover Experiments Demonstrate the Reversibility
of the Formation of the Proposed Oxocarbenium Intermediate
References
(1) Williamson, A. W. J. Chem. Soc. 1852, 106, 229.
(2) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem., Int. Ed. 2006, 45,
1248.
(3) (a) Review of acetal-based ether synthesis: Mukaiyama, T. Synthesis 1987,
1043. Selected examples of alternative approaches to dialkyl ether
synthesis: (b) Zaccheria, F.; Psaro, R.; Ravasio, N. Tetrahedron Lett. 2009,
50, 5221. (c) Taber, D. F.; Paquette, C. M.; Reddy, P. G. Tetrahedron
Lett. 2009, 50, 2462. (d) Spantulescu, M. D.; Boudreau, M. A.; Vederas,
J. C. Org. Lett. 2009, 11, 645. (e) Zhang, Z.; Widenhoefer, R. A. Org.
Lett. 2008, 10, 2079. (f) Felstead, R.; Gibson, S. E.; Rooney, A.; Tse,
E. S. Y. Eur. J. Org. Chem. 2008, 4963. (g) Fisk, J. S.; Tepe, J. J. J. Am.
Chem. Soc. 2007, 129, 3058. (h) Corma, A.; Renz, M. Angew. Chem., Int.
Ed. 2007, 46, 298. (i) Zhang, Y.; Li, C.-J. J. Am. Chem. Soc. 2006, 128,
4242. (j) Oe, Y.; Ohta, T.; Ito, Y. Synlett 2005, 179. (k) Shintou, T.;
Mukaiyama, T. J. Am. Chem. Soc. 2004, 126, 7359. (l) Brandes, A.; Eggert,
U.; Hoffmann, H. M. R. Synlett 1994, 745. (m) Cox, G. G.; Kulagowski,
J. J.; Moody, C. J.; Sie, E.-R. H. B. Synlett 1992, 975.
Scheme 4. Postulated Reaction Pathway for Ether Formation
(4) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany 2005.
(5) (a) Stefani, H. A.; Cella, R.; Vieira, A. S. Tetrahedron 2007, 63, 3623. (b)
Darses, S.; Genet, J.-P. Chem. ReV. 2008, 108, 288. (c) Molander, G. A.;
Ellis, N. Acc. Chem. Res. 2007, 40, 275.
(6) C-Glycoside syntheses: (a) Vieira, A. S.; Fiorante, P. F.; Hough, T. L. S.;
Ferreira, F. P.; Ludtke, S. L.; Stefani, H. A. Org. Lett. 2008, 10, 5215. (b)
Ramnauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3,
2013. Cross-coupling: (c) Molander, G. A.; Canturk, B. Org. Lett. 2008,
10, 2135. Allylation with organoborates: (d) Hunter, R.; Tomlinson, G. D.
Tetrahedron Lett. 1989, 30, 2013. (e) Hunter, R.; Michael, J. P.; Tomlinson,
G. D. Tetrahedron 1994, 50, 871. Aryl ether syntheses: (f) Quach, T. D.;
Batey, R. A. Org. Lett. 2003, 5, 1381. (g) Chan, D. M. T.; Monaco, K. L.;
Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933. (h) Evans,
D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
(7) Reviews: (a) Petasis, N. A. Aust. J. Chem. 2007, 60, 795. (b) Kaiser, P. F.;
Churches, Q. I.; Hutton, C. A. Aust. J. Chem. 2007, 60, 799.
(8) (a) Gras, J.-L.; Chang, Y.-Y. K. W.; Guerin, A. Synlett 1985, 74. (b)
Berliner, M. A.; Belecki, K. J. Org. Chem. 2005, 70, 9618.
oxygen of acetal I binds to organodifluoroborane IV to form
zwitterion V, which reversibly collapses to form oxocarbenium VI
and nucleophilic organodifluoroalkoxyborate VII. We postulate that
the rate-determining nature of the oxocarbenium formation (cf.
Scheme 2) is due to this equilibrium and that nucleophilic capture
of a discrete oxocarbenium intermediate VI by organodifluoro-
alkoxyborate VII is relatively facile, ultimately delivering dialkyl
ether III. The superior performance of potassium alkynyltrifluo-
roborates relative to other potassium organotrifluoroborates is
attributed to the greater migratory ability of sp-hybridized alky-
nyldifluoroalkoxyborates VII (R3 ) alkynyl).
In summary, we have identified a versatile synthesis of dialkyl
ethers via cross-coupling of potassium organotrifluoroborates and
acetals. This work provides a strategic alternative to the synthesis
of ethers from distinct reaction partners without the need for
deprotection or redox chemistry.16 It interfaces with the growing
interest in stable, commercially available organoboron reagents for
the modular synthesis of complex molecules.17 Furthermore, it
offers an avenue to the synthesis of highly hindered ethers, such
as those derived from chiral secondary and tertiary alcohols. The
(9) With the substrate combination employed in Table 1, the regioselectivity
was ∼15:1. In some cases with less nucleophilic organotrifluoroborates,
the corresponding methyl ethers could be observed.
(10) See the Supporting Information for details.
(11) With potassium aryltrifluoroborates, significant amounts of the methyl ether
products were detected. The poor regioselectivity observed with these
substrates is under investigation.
(12) Although initial attempts with transition-metal catalysts led to deprotection
or no reaction, further investigations are ongoing.
(13) (a) Stafford, S. L. Can. J. Chem. 1963, 41, 807. (b) Bir, G.; Schacht, W.;
Kaufmann, D. J. Organomet. Chem. 1988, 340, 267. (c) Vedejs, E.;
Chapman, R. W.; Fields, S. C.; Lin, S.; Schrimpf, M. R. J. Org. Chem.
1995, 60, 3020. (d) Matteson, D. S.; Kim, G. Y. Org. Lett. 2002, 4, 2153.
(14) Phenyldifluoroborane was observed by 11B NMR spectroscopy (24.7 ppm)
when potassium phenyltrifluoroborate was treated with BF3 ·OEt2 in C6D6:
Farooq, O. J. Fluorine Chem. 1995, 70, 225.
(15) Singleton, D. A.; Thomas, A. A. J. Am. Chem. Soc. 1995, 117, 9357, and
references cited therein.
(16) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009,
48, 2854.
(17) (a) Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2009, 48, 3565. (b)
Molander, G. A.; Sandrock, D. L. J. Am. Chem. Soc. 2008, 130, 15792.
(c) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716. (d)
Nogushi, H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758.
(18) (a) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1, 1683. (b)
Brak, K.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 3850.
JA906514S
9
J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009 18059