A R T I C L E S
Diring et al.
through weak intermolecular interactions such as hydrogen
bonding, π-π stacking, electrostatic interactions, van der Waals
forces, and solvophobic interactions. As a matter of fact, the
electronic performances in such electronic devices rely on the
intermolecular order in the active layer.
to stabilize molecular organizations over larger temperature
ranges and to favor the emergence of molecular self-assemblies,
for example, organo-gels or liquid crystals.16 For this purpose,
we introduced amide functions between the ethynyl-pyrene core
and the promesogenic gallic substituents to stabilize the liquid-
crystalline phases over large temperature ranges and to favor
the emergence of robust organic gels.
Pyrene is a prototypical molecule, which has high fluores-
cence quantum yield in solution and shows efficient excimer
emission.9 Pyrene and its derivatives have been extensively
applied as biological probes,10 in photonic devices,11 and as
liquid crystalline materials.12 Despite its wide use, the fact that
the absorption and emission properties of pyrene cores are
confined to the UV region constitutes a major drawback.
Recently, it has been demonstrated that the absorption and
emission characteristics of pyrene can be bathochromatically
tuned in the visible region by extending the π-conjugation upon
introduction of ethynyl functions.13 Pyrene can adequately be
functionalized in the 1,3,6,8 positions providing di- or tetra-
substitutions with ethynyl derivatives producing compounds in
a controlled manner.13 Introduction of promesogenic side groups
has allowed the synthesis of fluorescent mesomorphic matter,
and a stimuli responsive liquid crystalline material in which
changes in the photoluminescence emission were triggered by
a shear-induced phase transition.14,15
Results and Discussion
Synthesis. The target molecules were prepared by a conver-
gent protocol using 1,6-dibromopyrene17 or 1,3,6,8-tetrabro-
mopyrene18 and N-(4-ethynylphenyl)-3,4,5-tris(hexadecyloxy)-
benzamide with catalytic amounts of palladium(0) (Scheme 1).
The latter terminal alkyne was synthesized in two steps from
3,4,5-tris(hexadecyloxy)benzoic acid chloride and 4-trimethyl-
silylethynylaniline (see the Supporting Information). Compounds
1 and 2 were stable and obtained in good yields and high scales.
1
Their molecular structures and purity were assigned using H,
13C NMR, mass spectroscopy, and elemental analysis.
Spectroscopic Characterizations in Solution and in the
Solid State. The absorption spectra of compound 1 in diluted
dichloromethane solutions show two main absorption band peaks
at 431 and 411 nm (Table 1). The absorption bands located at
higher energies (307, 295, and 250 nm) are likely due to π-π*
and n-π* transitions localized on the alkoxyphenyl fragments
(Figure 1a). The absorption spectrum of compound 2 is similar
but shows a pronounced bathochromic shift of the main
absorption band peaks now located at 482 and 458 nm (Figure
1b). Exciting the low energy absorption bands of compound 1
leads to strong emissions at 445 nm (0-0 transition) and 473
nm (0-1 transition) with a quantum yield of 95% (Table 1 and
Figure 1a). The fluorescence spectrum shows relatively good
mirror symmetry with respect to the lowest energy absorption
transitions, confirming that the same optical transitions are
involved in both absorption and emission processes. The small
Stokes shift observed is due to substantial invariance of the
molecular geometric structure in the ground (S0) and the first
excited (S1) states, while the perfect match between the
excitation and absorption spectra points to the efficient radiative
deactivation of the excited electronic state. The fluorescence
In addition, despite their exceptional luminescence properties,
ethynyl-pyrene derivatives have not been used up to now to
provide robust and highly luminescent low molecular weight
gelators. The present contribution fills this gap and uses these
organo-gels in field-effect optoelectronic devices. To reach the
goal, we used hydrogen-bonding functions such as amide groups
(5) (a) van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, N. N.;
Watson, M.; Mu¨llen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H.
AdV. Mater. 2003, 15, 495. (b) Pisula, W.; Menon, A.; Stepputat, M.;
Lieberwirth, I.; kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mu¨llen,
K. AdV. Mater. 2005, 17, 684. (c) Kitamura, T.; Nakaso, S.; Mizoshita,
N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. J. Am.
Chem. Soc. 2005, 127, 14769.
(6) (a) Mitschke, U.; Ba¨uerle, P. J. Mater. Chem. 2000, 10, 1471. (b)
Hassheider, T.; Benning, S. A.; Kitzerow, H.-S.; Achard, M.-F.; Bock,
H. Angew. Chem., Int. Ed. 2001, 40, 2060.
(7) (a) Muccini, M. Nature Materials, 2006, 5, 605. (b) Loi, M. A.; Da
Como, E.; Dinelli, F.; Murgia, M.; Zamboni, R.; Biscarini, F.; Muccini,
M. Nat. Mater. 2005, 4, 81.
(8) (a) Greeg, B. A.; Fox, M. A.; Bard, A. J. J. Phys. Chem. 1990, 94,
1586. (b) Fox, A. M.; Grant, J. V.; Melamed, D.; Torimoto, T.; Liu,
C.-Y.; Bard, A. J. Chem. Mater. 1998, 10, 1771. (c) Kubo, W.; Kambe,
S.; Nakade, S.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S.
J. Phys. Chem. B 2003, 107, 4374.
(13) (a) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K. Chem.-Eur. J.
2006, 12, 824. (b) Venkataramana, G.; Sankararaman, S. Org. Lett.
2006, 8, 2739. (c) Venkataramana, G.; Sankararaman, S. Eur. J. Org.
Chem. 2005, 4162. (d) Zhao, Z.; Li, J.-H.; Chen, X.; Lu, P.; Yang, Y.
Org. Lett. 2008, 10, 3041. (e) Kim, H. M.; Lee, Y. O.; Lim, C. S.;
Kim, J. S.; Cho, B. R. J. Org. Chem. 2008, 73, 5127. (f) Leroy-Lhez,
S.; Fages, F. Eur. J. Org. Chem. 2005, 2684. (g) Xing, Y.; Xu, X.;
Zhang, P.; Tian, W.; Yu, G.; Lu, P.; Liu, Y.; Zhu, D. Chem. Phys.
Lett. 2005, 408, 169. (h) Zhao, Z.; Xu, X.; Jiang, Z.; Lu, P.; Yu, G.;
Liu, Y. J. Org. Chem. 2007, 72, 8345. (i) Xiao, J.; Li, J.; Li, C.; Huang,
C.; Li, Y.; Cui, S.; Wang, S.; Liu, H. Tetrahedron Lett. 2008, 49,
2656. (j) Shimizu, H.; Fujimoto, K.; Furusyo, M.; Maeda, H.; Nanai,
Y.; Mizuno, K.; Inouye, M. J. Org. Chem. 2007, 72, 1530. (k) Xiao,
J.; Xu, J.; Cui, S.; Liu, H.; Wang, S.; Li, Y. Org. Lett. 2008, 10, 645.
(l) Bernhardt, S.; Kastler, M.; Enkelmann, V.; Baumgarten, M.; Mu¨llen,
K. Chem.-Eur. J. 2006, 12, 6117.
(9) Fo¨rster, T.; Kasper, K. Z. Electrochem. 1955, 59, 976.
(10) (a) Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126,
4820. (b) Fujimoto, K.; Shimizu, H.; Inouye, M. J. Org. Chem. 2004,
69, 3271. (c) Han, M. K.; Lin, P.; Paek, D.; Harvey, J. J.; Fuior, E.;
Knutson, J. R. Biochemistry 2002, 41, 3468–3476. (d) Langenegger,
S. M.; Ha¨ner, R. Chem. Commun. 2004, 2792.
(11) (a) Otsubo, T.; Aso, Y.; Takamiya, K. J. Mater. Chem. 2002, 12, 2565.
(b) Jia, W.-L.; McCormick, T.; Liu, Q.-D.; Fukutani, H.; Motala, M.;
Wang, R.-Y.; Tao, Y.; Wang, S. J. Mater. Chem. 2004, 14, 3344. (c)
Tang, C.; Liu, F.; Xia, Y.-J.; Lin, J.; Xie, L.-H.; Zhong, G.-Y.; Fan,
Q.-L.; Huang, W. Org. Electron. 2006, 7, 155–162. (d) Oh, H.-Y.;
Lee, C.; Lee, S. Org. Electron. 2009, 10, 13.
(12) (a) Benning, S. A.; Hassheider, T.; Keuker-Baumann, S.; Bock, H.;
Della Sala, F.; Frauenheim, T.; Kitzerow, H.-S. Liq. Cryst. 2001, 28,
1105. (b) Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiy-
anovskaya, I.; Singer, K. D.; Balagurusamy, V. S. K.; Heiney, P. A.;
Schnell, I.; Rapp, A.; Spiess, H.-W.; Hudson, S. D.; Duan, H. Nature
2002, 419, 384. (c) de Halleux, V.; Calbert, J. P.; Brocorens, P.; Cornil,
J.; Declercq, J. P.; Bre´das, J. L.; Geerts, Y. AdV. Funct. Mater. 2004,
14, 649. (d) Kamikawa, Y.; Kato, T. Org. Lett. 2006, 8, 2463. (e)
Kim, Y. H.; Yoon, D. K.; Lee, E. H.; Koan, Y. K.; Jung, H.-T. J.
Phys. Chem. B 2006, 110, 20836. (f) Sienkowska, M. J.; Monobe,
H.; Kaszynski, P.; Shimizu, Y. J. Mater. Chem. 2007, 17, 1392. (g)
Sienkowska, M. J.; Farrar, J. M.; Zhang, F.; Kusuma, S.; Heiney, P. A.;
Kaszynski, P. J. Mater. Chem. 2007, 17, 1399.
(14) (a) Sagara, Y.; Kato, T. Angew. Chem., Int. Ed. 2008, 47, 5175. (b)
Kamikawa, Y.; Kato, T. Langmuir 2007, 23, 274.
(15) Hayer, A.; de Halleux, V.; Ko¨lher, A.; El-Garoughy, A.; Meijer, E. W.;
Barbera, J.; Tant, J.; Lein, J.; Lehmann, M.; Gierschner, J.; Cornil, J.;
Geerts, Y. H. J. Am. Chem. Soc. 2006, 110, 7653.
(16) Ziessel, R.; Camerel, F.; Donnio, B. Chem. Rec. 2009, 9, 1.
(17) Grimshaw, J.; Grimshaw, J. T. J. Chem. Soc., Perkin Trans. 1 1972,
1622.
(18) Kim, H. M.; Lee, Y. O.; Lim, C. S.; Kim, J. S.; Cho, B. R. J. Org.
Chem. 2008, 73, 5127.
9
18178 J. AM. CHEM. SOC. VOL. 131, NO. 50, 2009