10.1002/anie.202012760
Angewandte Chemie International Edition
RESEARCH ARTICLE
point energy computations with the SMD model[27] at the same
level as for the optimized geometry. Higher level single-point
energies were computed by the domain-based local pair natural
orbital CCSD(T) (labeled DLPNO-CCSD(T)) method with a cc-
pVTZ basis set. The SAPT analysis was performed at the
SAPT0/jun-cc-pvdz level of theory on the optimized geometries[28]
[10]
[11]
[12]
H. Zhu, D. J. O'Leary, M. P. Meyer, Angew. Chem. Int. Ed. 2012,
51, 11890-11893.
Z. Lachtar, A. Khorief Nacereddine, A. Djerourou, Struct. Chem.
2020, 31, 253-261.
a) V. Nevalainen, Tetrahedron: Asymmetry 1991, 2, 429-435; b) V.
Nevalainen, Tetrahedron: Asymmetry 1991, 2, 827-842; c) V.
Nevalainen, Tetrahedron: Asymmetry 1991, 2, 63-74; d) V.
Nevalainen, Tetrahedron: Asymmetry 1992, 3, 933-945; e) V.
Nevalainen, Tetrahedron: Asymmetry 1992, 3, 921-932; f) L. P.
Linney, C. R. Self, I. H. Williams, J. Chem. Soc., Chem. Commun.
1994, 1651-1652.
a) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106; b)
C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys.
2013, 139, 134101.
J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J. P.
Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput.
2011, 7, 625-632.
a) A. Fujii, H. Hayashi, J. W. Park, T. Kazama, N. Mikami, S.
Tsuzuki, Phys. Chem. Chem. Phys. 2011, 13, 14131-14141; b) S.
Grimme, R. Huenerbein, S. Ehrlich, ChemPhysChem 2011, 12,
1258-1261; c) J. W. G. Bloom, R. K. Raju, S. E. Wheeler, J. Chem.
Theory. Comput. 2012, 8, 3167-3174.
utilizing the PSI4 code.[29]
Conformational analyses were
performed using xtb (version 5.8) employing GFN2-xTB by
simulated annealing molecular dynamics (MD) simulations in the
gas phase.[30] All energies discussed are Gibbs free relative
energies at 298.15 K and 1 atm in kcal mol–1 unless noted
otherwise. Effects of zero-point vibrational energy (ZPVE)
corrections are included.
[13]
[14]
[15]
Acknowledgments
[16]
[17]
R. Pollice, P. Chen, Angew. Chem. Int. Ed. 2019, 58, 9758-9769.
A. S. Demir, I. Mecitoglu, C. Tanyeli, V. Gülbeyaz, Tetrahedron:
Asymmetry 1996, 7, 3359-3364.
We acknowledge financial support from the DFG within the priority
program SPP 1807 “Control of London Dispersion Interactions in
Molecular Chemistry” (SCHR 597/28-2). This work was also
supported by the Alexander von Humboldt Foundation
(Fellowship to L.J.S.). We thank Jan M. Schümann (Justus Liebig
University Giessen) for valuable discussions and Olga
Reshetylova (Igor Sikorsky Kyiv Polytechnic Institute) for
synthetic contributions. We acknowledge Heike Hausmann
(Justus Liebig University Giessen) for support with NMR
spectroscopy and Dennis Gerbig (Justus Liebig University
Giessen) for maintaining the computer server cluster.
[18]
[19]
A. J. Misquitta, R. Podeszwa, B. Jeziorski, K. Szalewicz, J. Chem.
Phys. 2005, 123, 214103.
a) B. Kahr, D. Van Engen, K. Mislow, J. Am. Chem. Soc. 1986,
108, 8305-8307; b) S. Rösel, C. Balestrieri, P. R. Schreiner, Chem.
Sci. 2017, 8, 405-410; c) A. C. N. Kwamen, M. Schlottmann, D.
Van Craen, E. Isaak, J. Baums, L. Shen, A. Massomi, C. Räuber,
B. P. Joseph, G. Raabe, C. Göb, I. M. Oppel, R. Puttreddy, J. S.
Ward, K. Rissanen, R. Fröhlich, M. Albrecht, Chem. Eur. J. 2020,
26, 1396-1405.
G. B. Stone, Tetrahedron: Asymmetry 1994, 5, 465-472.
a) D. Van Craen, W. H. Rath, M. Huth, L. Kemp, C. Räuber, J. M.
Wollschläger, C. A. Schalley, A. Valkonen, K. Rissanen, M.
Albrecht, J. Am. Chem. Soc. 2017, 139, 16959-16966; b) M.
Strauss, H. A. Wegner, Angew. Chem. Int. Ed. 2019, 0.
I. A. Kieffer, N. R. Treich, J. L. Fernandez, Z. M. Heiden, Dalton
Trans. 2018, 47, 3985-3991.
[20]
[21]
[22]
[23]
a) S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J.
Phys. Chem. A 2002, 106, 4423-4428; b) M. C. Sherman, M. R.
Ams, K. D. Jordan, J. Phys. Chem. A 2016, 120, 9292-9298.
C. Adamo, M. Cossi, G. Scalmani, V. Barone, Chem. Phys. Lett.
1999, 307, 265-271.
Keywords: asymmetric catalysis • borane reduction • CBS
reduction • noncovalent interactions • steric repulsion
[24]
[25]
[26]
[27]
W. Gerrard, A. Nechvatal, Nature 1947, 159, 812-813.
F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73-78.
A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B
2009, 113, 6378-6396.
E. Papajak, J. Zheng, X. Xu, H. R. Leverentz, D. G. Truhlar, J.
Chem. Theory. Comput. 2011, 7, 3027-3034.
R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E.
DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. Di
Remigio, R. M. Richard, J. F. Gonthier, A. M. James, H. R.
McAlexander, A. Kumar, M. Saitow, X. Wang, B. P. Pritchard, P.
Verma, H. F. Schaefer, K. Patkowski, R. A. King, E. F. Valeev, F.
A. Evangelista, J. M. Turney, T. D. Crawford, C. D. Sherrill, J.
Chem. Theory. Comput. 2017, 13, 3185-3197.
[1]
[2]
J. N. Israelachvili, Intermolecular and surface forces, Academic
Press, London ; San Diego, 1991.
a) R. Eisenschitz, F. London, Z. Phys. 1930, 60, 491-527; b) F.
London, Z. Phys. 1930, 63, 245-279; c) J. P. Wagner, P. R.
Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274-12296.
a) R. C. Wende, A. Seitz, D. Niedek, S. M. M. Schuler, C.
Hofmann, J. Becker, P. R. Schreiner, Angew. Chem. Int. Ed. 2016,
55, 2719-2723; b) E. Procházková, A. Kolmer, J. Ilgen, M.
Schwab, L. Kaltschnee, M. Fredersdorf, V. Schmidts, R. C.
Wende, P. R. Schreiner, C. M. Thiele, Angew. Chem. Int. Ed.
2016, 55, 15754-15759; c) A. J. Neel, M. J. Hilton, M. S. Sigman,
F. D. Toste, Nature 2017, 543, 637-646; d) G. Lu, R. Y. Liu, Y.
Yang, C. Fang, D. S. Lambrecht, S. L. Buchwald, P. Liu, J. Am.
Chem. Soc. 2017, 139, 16548-16555; e) J. Miró, T. Gensch, M.
Ellwart, S.-J. Han, H.-H. Lin, M. S. Sigman, F. D. Toste, J. Am.
Chem. Soc. 2020, 142, 6390-6399; f) T. Deb, R. M. Franzini,
Synlett 2020, 31, 938-944.
[28]
[29]
[3]
[30]
C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory. Comput.
2019, 15, 1652-1671.
[4]
[5]
a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys.
2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J.
Comput. Chem. 2011, 32, 1456-1465; c) S. Grimme, A. Hansen, J.
G. Brandenburg, C. Bannwarth, Chem. Rev. 2016, 116, 5105-
5154.
a) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K. Singh,
J. Am. Chem. Soc. 1987, 109, 7925-7926; b) E. J. Corey, R. K.
Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551-5553; c)
E. J. Corey, S. Shibata, R. K. Bakshi, J. Org. Chem. 1988, 53,
2861-2863; d) E. J. Corey, J. O. Link, Tetrahedron Lett. 1989, 30,
6275-6278; e) E. J. Corey, R. K. Bakshi, Tetrahedron Lett. 1990,
31, 611-614; f) E. J. Corey, C. J. Helal, Tetrahedron Lett. 1995, 36,
9153-9156.
[6]
a) E. J. Corey, J. O. Link, R. K. Bakshi, Tetrahedron Lett. 1992, 33,
7107-7110; b) E. J. Corey, C. J. Helal, Angew. Chem. Int. Ed.
1998, 37, 1986-2012.
[7]
[8]
[9]
B. T. Cho, D.-J. Kim, Bull. Korean Chem. Soc. 2004, 25, 1385-
1391.
D. K. Jones, D. C. Liotta, I. Shinkai, D. J. Mathre, J. Org. Chem.
1993, 58, 799-801.
a) M. P. Meyer, Org. Lett. 2009, 11, 4338-4341; b) T. Giagou, M.
P. Meyer, Chem. Eur. J. 2010, 16, 10616-10628.
8
This article is protected by copyright. All rights reserved.