C. Fraschetti et al.
J. Rebek. Self-folding cavitands od nanoscale dimensions. J. Am. Chem.
Soc. 2000, 122, 8880; c) D. M. Rudkevich, J. Rebek. Depening cavitands.
J. Eur. Org. Chem. 1999, 1991; d) D. M. Rudkevich. Nanoscale molecular
contaniners. Bull. Chem. Soc. Jpn. 2002, 75, 393.
[27] M. Gangoda, R. K. Gilpin, J. Figueirinhas. Deiterium nuclear magnetic
resonance studies of alkyl-modified silica. J. Phys. Chem. 1989, 93, 4815.
[28] M. Sawada. Chiral recognition in host-guest complexation deter-
mined by FAB mass spectrometry. J. Mass Spectrom. Soc. Jpn. 1997,
45(3), 439.
[29] X. Quin, T. Tzvetkov, X. Liu, D. C. Lee, L. Yu, D. C. Jacobs. Site-selective
abstraction in the reaction of 5–20 eV O+ with a self-assembled
monolayer. J. Am. Chem. Soc. 2004, 126, 13232.
[30] J. Terao, H. Todo, S. A. Begum, H. Kuniyasu, N. Kambe. Copper-
Catalyzed cross-coupling reaction of grignard reagents with primary-
alkyl halides: remarkable effect of 1-phenylpropyne. Angew. Chem.
Int. Ed. 2007, 46, 2086.
[9] D. J. Cram, J. M. Cram. Container Molecules and Their Guests. The
Royal Society of Chemistry: Cambridge; 1994.
[10] a) T. Heinz, D. M. Rudkevich, J. Rebek. Pairwise selection of guests in
a cylindrical molecular capsule of nanometre dimension. J. Nature
1998, 394, 764; b) D. M. Rudkevich. Calixarenes 2001; c) Z. Asfari,
V. Böhmer, J. Harrowfield, J. Vicens (Eds). Kluwer: Dordrecht
The Netherlands. 2001, 155; (d) F. Hof, S. L. Craig, C. Nuckolls,
J. Rebek. Molecular encapsulation. Angew. Chem. Int. Ed. 2002, 41,
1488.
[31] M. Gaddis, R. Ellis, G. T. Currie. Girard T Reagent for Carbonyls. Nature
1961, 191, 1391.
[11] C. Reuter, R. Schmieder, F. Vőgtle. From rotaxanes to knots. Templat-
ing, hydrogen bond patterns, and cyclochirality. Pure Appl. Chem.
2000, 12, 2233.
[12] A. Szumna. Cyclochiral conformers of resorcin[4]arenes stabilized by
hydrogen bonds. Org. Biomol. Chem. 2007, 5, 1358.
[32] M. Klaes, C. Agena, M. Köhler, M. Inoue, T. Wada, Y. Inoue, J. Mattay.
First synthesis, isolation and characterization of enantiomerically
pure and inherently chiral resorc[4]arenes by Lewis acid cyclization of
a resorcinol monoalkyl ether. Eur. J. Org. Chem. 2003, 8, 1404.
[33] R. Buckley, P. C. Bulman Page, Y. Chan, H. Heaney, M. Klaes,
M. J. McIldowie, V. McKee, J. Mattay, M. Mocerino, E. Moreno,
B. W. Skelton, A. H. White. The preparation and absolute configurations
of enantiomerically pure C4-symmetric tetraalkoxyresorcin[4]arenes
obtained from camphorsulfonate derivatives. Eur. J. Org. Chem. 2006,
22, 5135.
[13] a) A. Dalla Cort, C. Mandolini, L. Pasquini, L. Schiaffino. “Inherent
chirality” and curvature. New J. Chem. 2004, 28, 1198; b) Y. S. Zheng,
J. Luo. Inherently chiral calixarenes: a decade’s review. J. Incl. Phenom.
Macrocycl. Chem. 2011, DOI 10.1007/s10847-011-9935-4.
[14] M. Vincenti, A. Irico. Gas-phase interactions of calixarene and
resorcinarene cavitands with molecular guests studied by mass
spectrometry. Int. J. Mass Spectrom. 2002, 214, 23 and references
therein.
[15] M. W. Makinen, P. Vainiotalo, M. Nissinen, K. Rissanen. Ammonium
ion mediated resorcarene capsules: ESI-FT-ICRMS study on gas-
phase structure and ammonium ion affinity of tetraethyl resorcarene
and its per-methylated derivative. J. Am. Soc. Mass Spectrom. 2003,
14, 143.
[16] M. W. Makinen, P. Vainiotalo, K. Rissanen. Alkali metal mediated
resorcarene capsules: an ESI-FTICRMS study on gas-phase structure
and cation binding of tetraethyl resorcarene and its per-methylated
derivative. J. Am. Soc. Mass Spectrom. 2002, 13, 851.
[17] M. Vincenti, A. Irico, E. Dalcanale. Adv. Mass Spectrom. 1998, 14,
Chaps. 7/129 7/150, and references therein.
[34] R. Ahlrichs, M. Baer, M. Haeser, H. Horn, C. Koelmel. Electronic struc-
ture calculations on workstation computers: the program system
turbomole. Chem. Phys. Lett. 1989, 162, 165.
[35] A. D. Becke. Density-functional exchange-energy approximation
with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098.
[36] J. P. Perdew. Density-functional approximation for the correlation energy
of the inhomogeneous electron gas. Phys. Rev. B. 1986, 33, 8822.
[37] a) B. I. Dunlap, J. W. Conolly, J. R. Sabin. On some approximations in
applications of Xa theory. J. Chem. Phys. 1979, 71, 3396; b) O. Vahtras,
J. Almlöf, M. W. Feyereisen. Integral approximations for LCAO-SCF
calculations. Chem. Phys. Lett. 1993, 213, 514; K. Eichkorn, O. Treutler,
H. Öhm, M. Häser, R. Ahlichs. Auxiliary basis sets to approximate
Coulomb potentials. Chem. Phys. Lett. 1995, 240, 283.
[38] K. Eichkorn, O. Treutler, H. Ohm, M. Haser, R. Ahlrichs. Auxiliary basis
sets to approximate Coulomb potentials. Chem. Phys. Lett. 1995, 242,
652; R. Ahlrichs, M. Arnim. Methods and Techniques in Computa-
tional Chemistry, MET ECC-95 (ed.) E. Clementi, G. Corongiu, STEF:
Cagliari; 1995, 509.
[39] A. Schaefer, C. Huber, R. Ahlrichs. Fully optimized contracted Gauss-
ian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem.
Phys. 1994, 100, 5829.
[18] M. Vincenti, E. Dalcanale. Host–guest complexation in the gas phase.
Investigation of the mechanism of interaction between cavitands
and neutral guest molecules. J. Chem. Soc. Perkin Trans. 1995, 2, 1069.
[19] B. Botta, I. D’Acquarica, L. Nevola, F. Sacco, Z. V. Lopez, G. Zappia,
C. Fraschetti, M. Speranza, A. Tafi, F. Caporuscio, M. C. Letzel, J. Mattay.
Bis(diamido)-bridged basket resorcin[4]arenes as enantioselective
receptors for amino acids and amines. Eur.J. Org. Chem. 2007, 5995,
and the references therein.
[40] S. Grimme. Semiempirical GGA-Type Density functional constructed with
a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787.
[41] S. Grimme, J. Antony, T. Schwabe, C Mück-Lichtenfeld. Density
functional theory with dispersion corrections for supramolecular
structures, aggregates, and complexes of (bio)organic molecules.
Org. Biomol. Chem. 2007, 5, 741.
[42] P. Deglmann, K. May, F. Furche, R. Ahlrichs. Nuclear second analytical
derivative calculations using auxiliary basis set expansions. Chem.
Phys. Lett. 2004, 384, 103; P. Deglmann, K. May, F. Furche, R. Ahlrichs.
An efficient implementation of second analytical derivatives for den-
sity functional methods. Chem. Phys. Lett. 2002, 362, 511; P. Deglmann,
K. May, F. Furche. Efficient characterization of stationary points on
potential energy surfaces. J. Chem. Phys. 2002, 117, 9535.
[43] VMD for WIN-32, Version 1.8.3 (Februar, 15, 2005); see also W. Humpfrey,
A. Dalke, K. Schulten. VMD: visual molecular dynamics. J. Mol. Graphics.
1996, 14, 33.
[20] B. Botta, A. Tafi, F. Caporuscio, M. Botta, L. Nevola, I. D’Acquarica,
C. Fraschetti, M. Speranza. Modelling amphetamine/receptor inter-
actions: a gas-phase study of complexes formed between amphet-
amine and some chiral amido[4]resorcinarenes. Chem. Eur. J. 2008,
14, 3585.
[21] B. Botta, C. Fraschetti, F. R. Novara, A. Tafi, F. Sacco, L. Mannina,
A. P. Sobolev, J. Mattay, M. C. Letzel, M. Speranza. Interactions of
vinca alkaloids with chiral amido[4]resorcinarenes:
a dynamic,
kinetic, and spectroscopic study. Org. Biomol. Chem. 2009, 7, 1798,
and the references therein.
[22] B. Botta, C. Fraschetti, I. D’Acquarica, M. Speranza, F. R. Novara,
J. Mattay, M. C. Letzel. Gas-phase enantioselectivity of chiarl N-linked
peptidoresorc[4]arene isomers toward dipeptides. J. Phys. Chem. A
2009, 113, 14625, and the references therein.
[23] A. Mehdizadeh, M. C. Letzel, M. Klaes, C. Agena, J. Mattay. Chiral
discrimination on the host-guest-complexation of resorc[4]arenes
with quarternary amines. Eur. J. Mass Spectrom. 2004, 10, 649.
[24] R. Buckley, J. Y. Boxhall, P. C. Bulman Page, Y. Chan, M. R. J. Elsegood,
H. Heaney, K. E. Holmes, M. J. McIldowie, V. McKie, M. J. McGrath,
M. Mocerino, A. M. Poulton, E. P. Sampler, B. W. Skelton, A. H. White.
Mannich and O-alkylation reactions of tetraalkoxyresorcin[4]arenes –
the use of some products in ligand-assisted reactions. Eur. J. Org. Chem.
2006, 22, 5117.
[25] M. J. McIldowie, M. Mocerino, B. W. Skelton, A. H. White. Facile Lewis
acid catalyzed synthesis of C4 symmetric resorcinarenes. Org. Lett.
2000, 24, 3869.
[26] C. Schiel, G. A. Hembury,V. V. Borovkov, M. Klaes, C. Agena, T. Wada,
S. Grimme, Y. Inoue, J. Mattay. New insight into the geometry of
resorc[4]arenes: solvent-mediated supramolecular conformational
and chiroptical control. J. Org. Chem. 2006, 71, 976.
[44] a)T. Su, W. J. Chesnavitch. Parametrization of the ion–polar molecule
collision rate constant by trajectory calculations. J. Chem. Phys. 1982,
76(10), 5183; b) T. Su. Erratum: trajectory calculations of ion-polar
molecule capture rate constants at low temperatures [J. Chem.
Phys. 1988, 88, 4102]. J. Chem. Phys. 1988, 89(8), 5355.
[45] Kinetic isotope effect expressed as kH/kD.
[46] The used gas phase basicities have been taken from the http://
[47] For instance ΔPA = PAethanolamine-PAglycine = 10.4 kcal molꢁ1 (http://
kcal molꢁ1 (M. J. Locke, R. T. McIver Jr. Effect of solvation on the
acid/base properties of glycine. J. Am. Chem. Soc. 1983, 105, 4226).
[48] The diastereomeric excess found for [CP,S ꢀHꢀN2]+ adduct corresponds to
Y
the relative free energy difference of only approximately 0.2 kcal molꢁ1
.
wileyonlinelibrary.com/journal/jms
Copyright © 2012 John Wiley & Sons, Ltd.
J. Mass. Spectrom. 2012, 47, 72–79