M.B. Jones et al. / Polyhedron 29 (2010) 116–119
119
Table 2
were refined anisotropically. Structure solution, refinement, graph-
ics and generation of publication materials were performed by
using SHELXTL, V6.12 software. Additional details of data collection
and structure refinement are given in Table 2.
Crystal and refinement data for complexes [Al(N(o-PhNC(O)iPr)3)] and [Al(N(o-
PhNC(O)tBu)3)]a.
[Al(N(o-PhNC(O)iPr)3)]
[Al(N(o-PhNC(O)tBu)3)]
Formula
C30H33AlN4O3
524.58
C33H39AlN4O3
566.66
trigonal, P31c
11.2793(8)
11.2793(8)
28.563(4)
90
Formula weight
Lattice, space group
a (Å)
b (Å)
c (Å)
Supplementary data
orthorhombic, Pbca
15.9429(3)
9.8814(2)
34.5625(7)
90
CCDC 703388 and 729894 contains the supplementary crystal-
lographic data for [Al(N(o-PhNC(O)iPr)3)] and [Al(N(o-PhNC
(O)tBu)3)]. These data can be obtained free of charge via http://
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
a
(°)
b (°)
90
90
8
90
120
4
3147.0(6)
173(2)
0.71073
38246
c
(°)
Z
V (Å3)
5444.91(19)
173(2)
0.71073
36660
Temperature (K)
Radiation (k, Å)
Reflections measured
Unique reflections [Rint
Acknowledgments
]
5585
3881
Financial support from the donors of the American Chemical
Society Petroleum Research Fund (PRF-DNI) and the Emory Univer-
sity Research Committee (URC) is gratefully acknowledged. The
authors wish to thank Dr. S. Wu and Dr. B. Wang (Emory Univer-
sity’s NMR Research Centre) for assistance and Professor K.S. Hagen
for helpful discussions. Leslie A. Alexander is acknowledged for the
original synthesis of the N(o-PhNHC(O)tBu)3 ligand.
R1 (I > 2
wR2, all data
r
(l))
0.0499
0.1375
0.0713
0.1777
and filtered to remove KCl (3 equiv.). X-ray quality crystals were
obtained by vapour diffusion of hexanes into a concentrated tolu-
ene solution. (38 mg, 37%). 1H NMR (d), CDCl3, 600 MHz: 7.45 (dd,
3H, J = 7.8, 1.2 Hz, ArH), 7.09 (dt, 3H, J = 7.8, 1.2 Hz, ArH), 7.04 (dt,
3H, J = 7.8, 1.8 Hz, ArH), 6.95 (dd, 3H, J = 7.8, 1.8 Hz, ArH), 2.94 (7,
3H, J = 7.2 Hz, CH), 1.28 (d, 9H, J = 7.2 Hz, CH3), 0.55 (d, 9H,
J = 6.6 Hz, CH3). 13C NMR (d (ppm), CDCl3, 600 MHz): 184.84,
141.22, 140.48, 130.67, 126.29, 124.25, 122.25, 28.32, 19.14,
17.97. 27Al NMR (d, CDCl3, 600 MHz): 26 ppm (W1/2 = 3000 Hz).
References
[1] A.V. Lee, L.L. Schafer, Eur. J. Inorg. Chem. (2007) 2243.
[2] L.J.E. Stanlake, J.D. Beard, L.L. Schafer, Inorg. Chem. 47 (2008) 8062.
[3] J. Fawcett, G.A. Solan, Acta Crystallogr., Sect. E: Struct. Rep. Online E 61 (2005)
m1210.
[4] B.-H. Huang, T.-L. Yu, Y.-L. Huang, B.-T. Ko, C.-C. Lin, Inorg. Chem. 41 (2002)
2987.
[5] Y.-L. Huang, B.-H. Huang, B.-T. Ko, C.-C. Lin, J. Chem. Soc., Dalton Trans. (2001)
1359.
[6] R.P. Davies, D.J. Linton, R. Snaith, A.E.H. Wheatley, Chem. Commun.
(Cambridge) (2000) 193.
FT-IR (KBr, cmꢀ1):
m(CO) 1580, 1474, 1435, 1373, 1295, 1271,
1079, 976, 751, 507. Anal. Calc. for [AlIII(N(o-PhNC(O)iPr)3)]: C,
68.69; H, 6.34; N, 10.68. Found: C, 68.35; H, 6.41; N, 10.57%.
4.4. Synthesis of [Al(N(o-PhNC(O)tBu)3)]
To
a
stirred suspension of N(o-PhNHC(O)tBu)3 (250 mg,
[7] A. Klemp, I. Uson, J.-T. Ahlemann, T. Belgardt, J. Storre, H.W. Roesky, Main
Group Chem. 1 (1995) 127.
0.46 mmol) in toluene (4 mL) was added AlMe3 via syringe
(2.0 M in toluene, 0.23 mL, 0.46 mmol). After 20 min of stirring,
the reaction mixture became homogeneous and solvent was re-
moved in vacuo; leaving a colorless solid. X-ray quality crystals
were obtained by vapour diffusion of petroleum ether into a con-
centrated toluene solution of the complex (154 mg, 59%). 1H
NMR (d), CDCl3, 600 MHz: 7.24 (dd, 3H, J = 7.8, 1.2 Hz, ArH), 7.01
(m, 9H, ArH), 0.917 (s, 27H, CH3C). 13C NMR (d), CDCl3, 600 MHz:
184.706, 141.409, 140.62, 129.45, 125.17, 125.00, 124.21, 38.51,
28.15. 27Al NMR (d (ppm), CDCl3, 600 MHz): 27 (W1/2 = 3000 Hz).
[8] P. Fischer, R. Graef, J.J. Stezowski, J. Weidlein, J. Am. Chem. Soc. 99 (1977) 6131.
[9] J.R. Jennings, K. Wade, B.K. Wyatt, J. Chem. Soc., A (1968) 2535.
[10] J.R. Horder, M.F. Lappert, J. Chem. Soc., A (1968) 2004.
[11] Y. Kai, N. Yasuoka, N. Kasai, M. Kakudo, Bull. Chem. Soc. Jpn. 45 (1972) 3388.
[12] M.B. Power, S.G. Bott, D.L. Clark, J.L. Atwood, A.R. Barron, Organometallics 9
(1990) 3086.
[13] S.E. Eldred, D.A. Stone, S.H. Gellman, S.S. Stahl, J. Am. Chem. Soc. 125 (2003)
3422.
[14] J.M. Hoerter, K.M. Otte, S.H. Gellman, Q. Cui, S.S. Stahl, J. Am. Chem. Soc. 130
(2008) 647.
[15] J.M. Hoerter, K.M. Otte, S.H. Gellman, S.S. Stahl, J. Am. Chem. Soc. 128 (2006)
5177.
[16] J. Ruiz, M. Vivanco, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Chem. Soc., Chem.
Commun. (1991) 762.
[17] M. Vivanco, J. Ruiz, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Organometallics 12
(1993) 1802.
[18] M. Vivanco, J. Ruiz, C. Floriani, A. Chiesi-Villa, C. Rizzoli, Organometallics 12
(1993) 1794.
FT-IR (KBr, cmꢀ1):
m(CO) 1562, 1480, 1363, 1302, 1190, 968, 760,
749, 623, 529. Anal. Calc. for [AlN(o-PhNC(O)tBu)3]: C, 69.94; H,
6.94; N, 9.89. Found: C, 69.97; H, 6.84; N, 9.80%.
[19] M.B. Jones, C.E. MacBeth, InorgChem 46 (2007) 8117.
[20] J.W. Akitt, Prog. NMR Spectrosc. 21 (1989) 1.
[21] G.H. Robinson (Ed.), Coordination Chemistry of Aluminium, VCH Publishers,
INC., New York, 1993.
[22] P.B. Donaldson, P.A. Tasker, N.W. Alcock, J. Chem. Soc., Dalton Trans. (1977)
1160.
[23] E.B. Fleischer, A.E. Gebala, D.R. Swift, P.A. Tasker, Inorg. Chem. 11 (1972) 2775.
[24] E. Larsen, G.N. LaMar, B.E. Wagner, J.E. Parks, R.H. Holm, Inorg. Chem. 11
(1972) 2652.
[25] E.I. Stiefel, G.F. Brown, Inorg. Chem. 11 (1972) 434.
[26] D.L. Kepert, Inorg. Chem. 11 (1972) 1561.
[27] H. Abrahamson, J.R. Heiman, L.H. Pignolet, Inorg. Chem. 14 (1975) 2070.
[28] J.G. Verkade, Coord. Chem. Rev. 137 (1994) 233.
[29] J. Pinkas, B. Gaul, J.G. Verkade, J. Am. Chem. Soc. 115 (1993) 3925.
[30] R. Benn, A. Rufinska, E. Janssen, H. Lehmkuhl, Organometallics 5 (1986) 825.
[31] R. Celenligil-Cetin, P. Paraskevopoulou, R. Dinda, R.J. Staples, E. Sinn, N.P. Rath,
P. Stavropoulos, Inorg. Chem. 47 (2008) 1165.
4.5. X-ray structure determinations
Suitable
crystals
of
[Al(N(o-PhNC(O)tBu)3)]and[Al(N(o-
PhNC(O)iPr)3)] were coated with Paratone N oil, suspended in
small fiber loops and placed in a cooled nitrogen gas stream at
173 K on a Bruker D8 APEX II CCD sealed tube diffractometer with
graphite monochromated Mo Ka (0.71073 Å) radiation. Data were
measured using a series of combinations of phi and omega scans
with 10 s frame exposures and 0.5° frame widths.
The structures were solved using Direct methods and difference
Fourier techniques (SHELXTL, V6.12) [32]. Hydrogen atoms were
placed their expected chemical positions using the HFIX command
and were included in the final cycles of least squares with isotropic
Uij’s related to the atom’s ridden upon. All non-hydrogen atoms
[32] G.M. Sheldrick, Acta Crystallogr., Sect. A: Foundations A64 (2008) 112.