Fig.
1
ORTEP view (30% ellipsoid probability) of
Fig.
2
ORTEP view (30% ellipsoid probability) of
[{[N(SiMe3)C(Ph)C(SiMe3)(C5H4N-2)]Ge}2] (2). Hydrogen atoms are
omitted for clarity. Selected bond distances (A) and angles (1):
Ge(1)–Ge(2) 2.602(8), Ge(1)–N(1) 2.057(3), Ge(1)–N(2) 1.955(4),
Ge(2)–N(4) 1.957(3), Ge(2)–N(3) 2.054(4), Si(1)–C(6) 1.907(4), Si(2)–N(2)
1.746(4), N(1)–C(5) 1.366(5), N(2)–C(10) 1.381(5), N(1)–C(1) 1.352(5),
C(5)–C(6) 1.471(6), C(6)–C(10), 1.355(6); N(2)–Ge(1)–N(1) 86.9(2),
N(2)–Ge(1)–Ge(2) 102.7(1), N(1)–Ge(1)–Ge(2) 83.4(1), N(4)–Ge(2)–N(3)
87.1(1), N(4)–Ge(2)–Ge(1) 102.8(1), N(3)–Ge(2)–Ge(1) 85.1(1),
C(1)–N(1)–C(5) 120.3(4), C(1)–N(1)–Ge(1) 117.8(3), C(5)–N(1)–Ge(1)
121.8(3), C(10)–N(2)–Ge(1) 116.1(3).
[{Ge(S)[N(SiMe3)C(Ph)C(SiMe3)(C5H4N-2)]}2S] (4). Hydrogen atoms
are omitted for clarity. Selected bond distances (A) and angles (1):
S(3)–Ge(1) 2.222(3), S(3)–Ge(2) 2.226(3), Ge(1)–S(1) 2.070(3), Ge(2)–S(2)
2.062(4), Ge(1)–N(2) 1.842(8), Ge(1)–N(1) 1.947(8), Ge(2)–N(4) 1.846(7),
Ge(2)–N(3) 1.963(9), N(1)–C(5) 1.380(1), N(2)–C(10) 1.396(1),
C(5)–C(6) 1.476(1), C(6)–C(10) 1.370(1); Ge(1)–S(3)–Ge(2) 101.4(1),
N(2)–Ge(1)–S(1) 122.0(2), N(1)–Ge(1)–S(1) 113.0(2), N(2)–Ge(1)–S(3)
101.4(2), N(1)–Ge(1)–S(3) 101.9(2), S(1)–Ge(1)–S(3) 121.3(1),
N(2)–Ge(1)–N(1) 91.8(3), C(1)–N(1)–Ge(1) 121.1(7), C(5)–N(1)–Ge(1)
118.5(6), N(4)–Ge(2)–S(2) 121.5(3), N(3)–Ge(2)–S(2) 113.8(3),
N(4)–Ge(2)–S(3) 100.8(2), N(3)–Ge(2)–S(3) 102.7(2), S(2)–Ge(2)–S(3)
121.4(1).
We gratefully acknowledge financial support from The Chinese
University of Hong Kong (Direct Grant No. 2060324).
Notes and references
z Selected spectroscopic data for 2: 1H NMR (benzene-d6): d 0.24
(s, 9H, SiMe3), 0.26 (s, 9H, SiMe3), 6.06–6.12 (m, 1H, 5-py), 7.17–7.39
(m, 5H, Ph), 7.41–7.45 (m, 1H, 3-py), 7.78–7.82 (m, 1H, 4-py),
8.09–8.11 (d, 1H, 6-py). 13C{1H} NMR (benzene-d6): d 2.63, 3.74
(SiMe3), 114.215 (CSiMe3), 124.65, 130.01, 138.08, 142.23, 143.54,
145.94, 147.97, 156.45, 159.53 (Ph and Py), 164.60 (NCPh). 4: 1H
NMR (THF-d8): d ꢁ0.01 (s, 9H, SiMe3), 0.16 (s, 9H, SiMe3), 6.60–6.64
(t, 1H, 5-py), 7.02–7.28 (m, 5H, Ph), 7.36–7.40 (d, 1H, 3-py), 7.50–7.52
(t, 1H, 4-py), 7.81–7.83 (d, 1H, 6-py). 13C{1H} NMR (THF-d8): d 2.63,
3.31 (SiMe3), 118.66 (CSiMe3), 125.18, 128.08, 129.56, 131.50, 136.63,
137.37, 144.60, 146.18, 147.16 (Ph and Py), 159.18 (NCPh).
y Crystal data for 2: C38H54Ge2N4Si4, M = 824.39, crystal size =
0.50 ꢂ 0.40 ꢂ 0.30 mm, Flack parameter = ꢁ0.008(9), monoclinic,
space group P21, a = 13.346(3), b = 11.006(3), c = 15.589(4) A,
b = 108.301(4)1, V = 2173.8(9) A3, Z = 2, Dc = 1.259 g cmꢁ3, m =
1.523 mmꢁ1, l = 0.71073 A, T = 293(2) K, 2ymax = 25.001, F(000) =
860, 7263 independent reflections (Rint = 0.0342), R1 = 0.0397,
wR2 = 0.0913 (I 4 2s(I)), largest diff. peak and hole: 0.597 and
ꢁ0.281 e Aꢁ3. 4: C38H54Ge2N4S3Si4, M = 920.57, crystal size =
0.40 ꢂ 0.30 ꢂ 0.20 mm, Flack parameter = 0.027(17), orthorhombic,
space group Pna21, a = 24.360(6), b = 11.062(3), c = 17.424(5) A,
V = 4695(2) A3, Z = 4, Dc = 1.302 g cmꢁ3, m = 1.546 mmꢁ1, l =
0.71073 A, T = 293(2) K, 2ymax = 28.071, F(000) = 1912, 11252
independent reflections (Rint = 0.1514), R1 = 0.0694, wR2 = 0.1370
Scheme 2 Synthesis of compound 4.
(I 4 2s(I)), largest diff. peak and hole: 0.602 and ꢁ1.095 e Aꢁ3
.
In conclusion, we have prepared a germanium(I) dimer from
the reduction of pyridyl-1-azaallyl germanium (II) chloride
with lithium metal. Structural studies support that there are
no multiple bond characters in the Ge(I) dimer. The reaction
of the Ge(I) dimer with an excess of elemental sulfur afforded a
novel germanium analogue of a dithiocarboxylic acid anhydride.
1 S. P. Green, C. Jones, P. C. Junk, K.-A. Lippert and A. Stasch,
Chem. Commun., 2006, 3978.
2 S. Nagendran, S. S. Sen, H. W. Roesky, D. Koley, H. Grubmuller,
¨
A. Pal and R. Herbst-Irmer, Organometallics, 2008, 27, 5459.
3 W. Wang, S. Inoue, S. Yao and M. Driess, Chem. Commun., 2009, 2661.
4 W.-P. Leung, C.-W. So, Y. S. Wu, H.-W. Li and T. C. W. Mak,
Eur. J. Inorg. Chem., 2005, 513.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6822–6824 | 6823