Scheme 1
.
Wacker Cyclization and Alkoxyalkynylation
Reaction
Table 1. Optimization of the Alkoxyalkynylation Reaction
entry
catalyst
reagent solvent/additive
yielda
1
2
3
4
5
6
7
8
9
PdCl2(CH3CN)2
PdCl2(CH3CN)2
Pd(TFA)2
3a
3c
3d
3d
3d
3d
3c
3e
3d
3d
Toluene, baseb 6% (<20%)
Toluene, baseb traces (<20%)
Toluene, baseb 19% (73%)
Pd(TFA)2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
17% (100%)
40% (93%)
73% (100%)
20% (84%)
43%c (>90%)
71%c
PdCl2(CH3CN)2
Pd(hfacac)2
Pd(hfacac)2
Pd(hfacac)2
Pd(hfacac)2
10 Pd(hfacac)2
73%c,d
bond formation unable to compete with other side reactions.8b
Herein,wereportaPd-catalyzedWackercyclization-alkynyla-
tion domino process using a benziodoxolone-derived reagent
3d (Scheme 1, B).
a Reaction conditions: 0.069 mmol 1a, 0.014 mmol catalyst, 0.083 mmol
reagent in 5 mL dry solvent under N2 at 23 °C for 12-16 h. Yield was
determined via GC-MS. Conversion is given in parentheses. b K2CO3 (2
equiv) and 0.20 equiv pyridine were used as base. c Isolated yield using
0.40 mmol 1a, 0.48 mmol 3d and 0.040 mmol catalyst in 10 mL CH2Cl2.
d As Entry 9, but using technical solvent under air.
Acetylenes have broad utility in organic chemistry,
biological chemistry, and material sciences.9 Furthermore,
the direct addition of acetylenes to nonactivated olefins is
challenging and has been successful only for strained
olefins10 or using radical methods.11 The Pd-catalyzed C-C
bond formation between a SP3 and a SP center is also a
difficult process, which was successful only in rare cases.12
Our report constitutes the first example of intramolecular
oxyalkynylation of nonactivated alkenes, which represents
an important breakthrough in the area of oxidative Pd
chemistry. The discovery of the unique superiority of
benziodoxolone derived reagents 3c-3e for alkynyl transfer
when compared with established alkynyliodonium salts (3a,
3b) constitutes an important advance in the burgeoning field
of hypervalent iodine chemistry13 and opens new perspective
for the development of more efficient reagents in Pd-
mediated C-C bond formation and other acetylene transfer
processes. Indeed, we recently discovered in our group that
benziodoxolone derivatives were also unique acetylene-
transfer reagents in a completely different process, namely
the Au-catalyzed alkynylation of heterocycles.14
Alkynyliodonium salts are known as oxidative/electrophilic
alkynylation reagents,13c-f but they have been used only
rarely for the metal-mediated introduction of acetylene
groups.15 Preliminary results using Stoltz’ conditions3g with
phenol 1a and alkynyliodonium salts 3a were disappointing,
leading mostly to acetylene dimerization and low conversion
(Table 1, Entry 1). However, using neutral benziodoxolone
reagents 3c and 3d, which have been largely ignored as
acetylene transfer reagents, a 19% yield of the desired
product was obtained with 3d (Entries 2-3).16 Bases were
not required and CH2Cl2 was the best solvent (Entry 4).17
At this point, full conversion was obtained, but a noniden-
tified decomposition pathway consumed the starting materi-
(6) (b) Muniz, K. J. Am. Chem. Soc. 2007, 129, 14542. (c) Muniz, K.;
Hovelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763. (d) Sibbald,
P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147.
(7) (a) Manzoni, M. R.; Zabawa, T. P.; Kasi, D.; Chemler, S. R.
Organometallics 2004, 23, 5618. (b) Michael, F. E.; Sibbald, P. A.; Cochran,
B. M. Org. Lett. 2008, 10, 793.
19
al.18 A catalyst screen (Entries 4-6) identified Pd(hfacac)2
as the most efficient Pd source for preventing the decomposi-
tion of the substrates (73% yield, Entry 6). To the best of
our knowledge, the use of this complex has not been reported
yet for oxidative Pd catalysis.
A sterically hindered silyl group is important to obtain
good yields, (Entries 6-8), but it is the benziodoxolone
(8) Review :(a) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocor-
nola, S. Chem. ReV. 2007, 107, 5318. For a discussion of high oxidation
states of Pd, see: (b) Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc.
2009, 131, 11234. (c) Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.
(9) Diederich F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry:
Chemistry, Biology and Material Science; Wiley-VCH: Weinheim, 2005.
(10) (a) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2008, 130,
5410. (b) Shirakura, M.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 5060.
(c) Kohno, K.; Nakagawa, K.; Yahagi, T.; Choi, J. C.; Yasuda, H.; Sakakura,
T. J. Am. Chem. Soc. 2009, 131, 2784.
(14) Brand, J. B.; Charpentier, J.; Waser, J. Angew. Chem., Int. Ed. 2009,
48, 9346.
(11) (a) Gong, J. C.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118, 4486.
(b) Schaffner, A. P.; Darmency, V.; Renaud, P. Angew. Chem., Int. Ed.
2006, 45, 5847.
(15) (a) Kang, S. K.; Lee, H. W.; Jang, S. B.; Ho, P. S. J. Org. Chem.
1996, 61, 4720. (b) Huang, X. A.; Zhong, P. J. Chem. Soc., Perkin Trans.
1 1999, 1543. (c) Yu, C. M.; Kweon, J. H.; Ho, P. S.; Kang, S. C.; Lee,
G. Y. Synlett 2005, 2631. (d) Canty, A. J.; Rodemann, T.; Skelton, B. W.;
White, A. H. Organometallics 2006, 25, 3996. (e) Canty, A. J.; Gardiner,
M. G.; Jones, R. C.; Rodemann, T.; Sharma, M. J. Am. Chem. Soc. 2009,
131, 7236. (f) Chaudhuri, P. D.; Guo, R.; Malinakova, H. C. J. Organomet.
Chem. 2008, 693, 567.
(12) Altenhoff, G.; Wurtz, S.; Glorius, F. Tetrahedron Lett. 2006, 47,
2925.
(13) (a) Wirth, T. HyperValent iodine chemistry: modern deVelopments
in organic synthesis, Vol. 224; Springer: New York, 2003. (b) Zhdankin,
V. V.; Stang, P. J. Chem. ReV. 2008, 108, 5299. (c) Beringer, F. M.; Galton,
S. A. J. Org. Chem. 1965, 30, 1930. (d) Ochiai, M.; Ito, T.; Takaoka, Y.;
Masaki, Y.; Kunishima, M.; Tani, S.; Nagao, Y. J. Chem. Soc., Chem.
Commun. 1990, 118. (e) Stang, P. J.; Arif, A. M.; Crittell, C. M. Angew.
Chem., Int. Ed. Engl. 1990, 29, 287. (f) Zhdankin, V. V.; Stang, P. J.
Tetrahedron 1998, 54, 10927. (g) Ochiai, M.; Masaki, Y.; Shiro, M. J.
Org. Chem. 1991, 56, 5511. (h) Zhdankin, V. V.; Kuehl, C. J.; Krasutsky,
A. P.; Bolz, J. T.; Simonsen, A. J. J. Org. Chem. 1996, 61, 6547.
(16) Previous to our work, the only report of benziodoxolone reagents
for C-C bond formation concerned CF3-transfer: (a) Eisenberger, P.;
Gischig, S.; Togni, A. Chem.sEur. J. 2006, 12, 2579. (b) Kieltsch, I.;
Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007, 46, 754. (c) Koller,
R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.; Togni, A. Angew.
Chem., Int. Ed. 2009, 48, 4332.
Org. Lett., Vol. 12, No. 2, 2010
385