10458
D. Thomae et al. / Tetrahedron 65 (2009) 10453–10458
(s), 1668 (s) cmꢁ1
.
1H NMR (250 MHz, DMSO-d6):
d
1.55 (m, 2H,
dried at room temperature until constant weight. The isolated solid
was purified by recrystallization in acetonitrile.
CH2), 1.68 (m, 4H, 2ꢂCH2), 2.31 (s, 3H, CH3), 2.45 (s, 3H, CH3), 3.00
(m, 4H, 2ꢂCH2). 13C NMR (62.5 MHz, DMSO-d6):
d
14.8, 23.3, 24.9,
No satisfying 13C NMR spectra were obtained for these three
compounds: due to their very low solubility, recording 13C NMR
spectra required long time accumulation and those products were
not stable in solution for a long time.
28.7, 56.0, 93.8, 114.7, 126.1, 150.2, 168.3, 196.6. GC–MS (EI, 70 eV):
m/z (%): 248 (80), 231 (100), 83 (23), 55 (14). HRMS calcd for
C13H17N2OS [MþH]þ 249.1056, found 249.1046.
4.5.1. 5-Acetyl-4-amino-2-(1-pyrrolidinyl)-3-selenophenecarboni-
4.4.20. 2,4-Diacetyl-3-methyl-5-(4-morpholinyl)-2-thiophene
trile (26). Yield: 88%. Brown solid; mp 279 ꢀC. IR: 3340 (s), 3270 (s),
(21). Yield: 55%. Pale brown crystal; mp 92–93 ꢀC. IR: 2971 (s),
3171 (s), 2955 (m), 2193 (s), 1623 (s), 1577 (s), 1540 (s) cmꢁ1 1H
.
1675 (s), 1642 (s) cmꢁ1. 1H NMR (250 MHz, DMSO-d6):
d 2.46 (s, 3H,
NMR (250 MHz, DMSO-d6):
d
2.01 (m, 7H, 2ꢂCH2þCH3), 3.57 (m,
CH3), 2.63 (s, 3H, CH3), 2.72 (s, 3H, CH3), 3.10 (m, 4H, 2ꢂCH2), 3.84
(m, 4H, 2ꢂCH2). 13C NMR (62.5 MHz, DMSO-d6):
d 16.4, 18.8, 26.9,
4H, 2ꢂCH2), 7.61 (s, 2H, NH2). GC–MS (EI, 70 eV): m/z (%): 283 (74),
268 (100), 240 (22). HRMS calcd for C11H14N3OSe [MþH]þ
284.0297, found 284.0280.
29.9, 31.4, 134.6, 139.1, 144.4, 155.3, 190.1, 195.7. GC–MS (EI, 70 eV):
m/z (%): 267 (100), 252 (67), 208 (27), 194 (49), 167 (33). HRMS
calcd for C13H18NO3S [MþH]þ 268.1002, found 268.0992.
4.5.2. 4-Amino-5-(4-chlorobenzoyl)-2-(1-piperidinyl)-3-selenophe-
necarbonitrile (27). Yield: 38%. Brown solid; mp 177 ꢀC. IR: 3397 (s),
4.4.21. 2,4-Diacetyl-3-methyl-5-(1-pyrrolidinyl)-2-thiophene
3260 (s), 2952 (m), 2194 (s), 1580 (s), 1538 (s) cmꢁ1 1H NMR
.
(22). Yield: 67%. Yellow crystal; mp 120–121 ꢀC. IR: 2969 (m), 1666
(m), 1621 (s) cmꢁ1 1H NMR (250 MHz, DMSO-d6):
. d 2.00 (m, 4H,
(250 MHz, DMSO-d6):
d
1.62 (m, 6H, 3ꢂCH2), 3.63 (m, 4H, 2ꢂCH2),
7.55 (m, 4H, 4ꢂCH), 7.97 (s, 2H, NH2). GC–MS (EI, 70 eV): m/z (%):
393 (100), 336 (8), 309 (15), 282 (14), 254 (11). HRMS calcd for
C17H17N3OSe [MþH]þ 394.0218, found 394.0195.
2ꢂCH2), 2.38 (s, 3H, CH3), 2.40 (s, 3H, CH3), 2.43 (s, 3H, CH3), 3.24
(m, 4H, 2ꢂCH2). 13C NMR (62.5 MHz, DMSO-d6):
d 16.2, 25.8, 29.7,
32.3, 53.4 120.7, 122.9, 144.5, 160.3, 189.4, 199.2. GC–MS (EI, 70 eV):
m/z (%): 251 (100), 236 (49), 208 (39), 167 (30), 70 (14). HRMS calcd
for C13H18NO2S [MþH]þ 252.1053, found 252.1049.
4.5.3. 3-Amino-5-(4-benzyl-1-piperazinyl)-2,4-selenophenedicarbo-
nitrile (28). Yield: 19%. Yellow solid; mp 158 ꢀC. IR: 3388 (s), 3328
(s), 3230 (s), 2172 (s), 1644 (s), 1550 (s), 1520 (s) cmꢁ1 1H NMR
.
4.4.22. 2,4-Diacetyl-3-methyl-5-(4-piperidinyl)-2-thiophene
(250 MHz, CDCl3):
d
2.60 (m, 4H, 2ꢂCH2), 3.63 (m, 6H,
(23). Yield: 65%. Colorless crystal; mp 112–113 ꢀC. IR: 2916 (m),
1686 (m), 1634 (s) cmꢁ1. 1H NMR (250 MHz, DMSO-d6):
d 1.53 (m,
2ꢂCH2þCH2), 4.79 (s, 2H, NH2), 7.30 (m, 5H, 5ꢂCH). GC–MS (EI,
70 eV): m/z (%): 371 (41), 280 (10), 262 (8). HRMS calcd for
C17H18N5Se [MþH]þ 372.0723, found 372.0696.
2H, CH2), 1.66 (m, 4H, 2ꢂCH2), 2.38 (s, 3H, CH3), 2.40 (s, 3H, CH3),
2.45 (s, 3H, CH3), 3.03 (m, 4H, 2ꢂCH2). 13C NMR (62.5 MHz, DMSO-
d6):
d 15.5, 23.5, 24.9, 29.9, 30.2, 56.5, 125.3, 128.6, 144.7, 166.4,
References and notes
190.3, 199.1. GC–MS (EI, 70 eV): m/z (%): 211 (52), 196 (100), 181
(12), 124 (15), 83 (14), 69 (4).
1. (a) Russell, R. K.; Press, J. B. In Comprehensive Heterocyclic Chemistry II; Katritzky,
A. R., Rees, C. W., Scriven, E. W. F., Padwa, A., Eds.; Pergamon: New York, NY,
1996; Vol. 2, pp 679–729; (b) Jesberger, M.; Davis, T. P.; Barner, L. Synthesis
2003, 1929; (c) The Chemistry of Heterocyclic Compounds: Thiophenes and its
Derivatives; Gronowitz, S., Ed.; Wiley: New York, NY, 1991; Vol. 44.
2. Morley, J. O.; Matthews, T. P. Org. Biomol. Chem. 2006, 4, 359.
3. Beers, S. A.; Malloy, E. A.; Wu, W.; Wachter, M.; Ansell, J.; Singer, M.; Steber, M.;
Barbone, A.; Kirchner, T.; Ritchie, D.; Argentieri, D. Bioorg. Med. Chem.1997, 5, 779.
4. Buschtaller, H.-P.; Siebert, C.; Steimetz, R.; Frank, A.; Berger, M.; Gottschlisich,
R.; Leibrock, J.; Krug, M.; Steinhilber, D.; Noe, C. J. Med. Chem. 2006, 49, 864.
5. Hallas, G.; Towns, A. D. Dyes Pigments 1997, 3, 219.
6. (a) Hesse, S.; Perspicace, E.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5261; (b) Tho-
mae, D.; Kirsch, G.; Seck, P. Synthesis 2007,1027; (c) Seck, P.; Thomae, D.; Kirsch, G.
J. Heterocycl. Chem. 2008, 45, 853; (d) Thomae, D.; Kirsch, G.; Seck, P. Synthesis
2008, 1600; (e) Thomae, D.; Kirsch, G.; Seck, P. Synthesis 2007, 2153; (f) Thomae,
D.; Perspicace, E.; Hesse, S.; Kirsch, G.; Seck, P. Tetrahedron 2008, 64, 9309.
7. Thomae, D.; Perspicace, E.; Xu, Z.; Henryon, D.; Schneider, S.; Hesse, S.; Kirsch,
G.; Seck, P. Tetrahedron 2009, 65, 2982.
8. (a) Gupta, A. K.; Ila, H.; Junjappa, H. Tetrahedron Lett. 1988, 29, 6633; (b) Gupta,
A. K.; Ila, H.; Junjappa, H. Tetrahedron 1990, 46, 2561; (c) Gupta, A. K.; Ila, H.;
Junjappa, H. Tetrahedron 1990, 46, 3703; (d) Singh, O. M.; Junjappa, H.; Ila, H. J.
Chem. Soc., Perkin Trans. 1 1997, 3561; (e) Barun, O.; Patra, P. K.; Ila, H.; Junjappa,
H. Tetrahedron Lett. 1999, 40, 3797; (f) Kishore, K.; Reddy, K. R.; Suresh, J. R.; Ila,
H.; Junjappa, H. Tetrahedron 1999, 55, 7645; (g) Basveshwar Rao, M. V.; Syam
Kumar, U. K.; Junjappa, H. Tetrahedron 1999, 55, 11563; (h) Mehta, B. K.; Nandi,
S.; Ila, H.; Junjappa, H. Tetrahedron 1999, 55, 12843; (i) Barun, O.; Mohanta, P. K.;
Ila, H.; Junjappa, H. Synlett 2000, 653; (j) Kolb, M. Synthesis 1990, 171; (k) To-
minaga, Y. J. Heterocycl. Chem. 1989, 26, 1167; (l) Yokoyama, M.; Togo, H.; Kondo,
S. Sulfur Rep. 1990, 10, 23.
9. (a) Sommen, G.; Comel, A.; Kirsch, G. Tetrahedron 2003, 59, 1557; (b) Sommen,
G.; Comel, A.; Kirsch, G. Synlett 2001, 1731; (c) Sommen, G.; Comel, A.; Kirsch, G.
Synthesis 2003, 735; (d) Sommen, G.; Comel, A.; Kirsch, G. Tetrahedron Lett.
2002, 43, 257.
10. (a) Fishwick, B. R.; Rowles, D. K.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. 1
1986, 1171; (b) Gewald, K.; Hain, U.; Schmidt, M. J. Prakt. Chem. Leipzig 1986,
328, 459; (c) El-Kousy, S. M.; Mohareb, R. M.; Sherif, S. M. J. Chem. Res., Synop.
1993, 8, 312.
11. Rehwald, M.; Gewald, K.; Bo¨ttcher, G. Heterocycles 1997, 45, 493.
12. Gruner, M.; Bo¨ttcher, G.; Gewald, K. J. Heterocycl. Chem. 2008, 45, 1071.
13. Thomae, D.; Kirsch, G.; Seck, P. Synthesis 2008, 1600.
14. Sommen, G.; Comel, A.; Kirsch, G. Synlett 2003, 855.
15. Yu, S.-Y.; Cai, Y.-X. Synth. Commun. 2003, 33, 3989.
4.4.23. 3-Acetyl-5-(4-chlorobenzoyl)-4-methyl-2-(4-morpholinyl)-3-
thiophene (24). Yield: 92%. Yellow crystal; mp 188 ꢀC. IR: 2957 (s),
1662 (s), 1625 (s) cmꢁ1 1H NMR (250 MHz, CDCl3):
. d 2.22 (s, 3H,
CH3), 2.49 (s, 3H, CH3), 3.04 (m, 4H, 2ꢂCH2), 3.78 (m, 4H, 2ꢂCH2),
7.37 (d, J¼8.6 Hz, 2H, 2ꢂCH), 7.63 (d, J¼8.6 Hz, 2H, 2ꢂCH). 13C NMR
(62.5 MHz, CDCl3):
d 16.7, 29.8, 54.5, 66.1, 125.3, 128.6, 129.7, 130.0,
138.3, 138.4, 145.2, 165.9, 187.9, 198.5. GC–MS (EI, 70 eV): m/z (%):
363 (100), 348 (48), 304 (23), 263 (16), 139 (81), 111 (36). HRMS
calcd for C18H19NO3SCl [MþH]þ 364.0769, found 364.0760.
4.4.24. 3-Acetyl-5-(4-Chlorobenzoyl)-4-methyl-2-(4-piperidinyl)-3-
thiophene (25). Yield: 48%. Yellow solid; mp 137 ꢀC. IR: 2930 (s),
1666 (s), 1618 (s), 1585 (s) cmꢁ1 1H NMR (250 MHz, DMSO-d6):
.
d
1.50 (m, 2H, CH2), 1.61 (m, 4H, 2ꢂCH2), 2.16 (s, 3H, CH3), 2.43 (s,
3H, CH3), 3.05 (m, 4H, 2ꢂCH2), 7.53 (d, J¼8.5 Hz, 2H, 2ꢂCH), 7.64 (d,
J¼8.5 Hz, 2H, 2ꢂCH). 13C NMR (62.5 MHz, DMSO-d6):
d 16.0, 22.8,
24.7, 29.1, 55.1, 122.0, 127.0, 128.5, 130.0, 136.4, 138.9, 145.4, 166.9,
186.7, 197.9. GC–MS (EI, 70 eV): m/z (%): 361 (100), 346 (66), 318 (6).
HRMS calcd for C19H21NO2SCl [MþH]þ 362.0976, found 362.0961.
4.5. Synthesis of substituted 4-amino-3-cyanoselenophenes:
general procedure
2-[Bis(methylsulfanyl)methylene]malononitrile
1
(0.01 mol)
was dissolved in DMF (15 mL). The secondary amine (0.01 mol) was
added and the mixture was heated at 70 ꢀC for 75 min. Then, fresh
sodium selenide (0.01 mol) was added and heated for 20 min at
70 ꢀC. Activated halide (0.02–0.03 mol) was added dropwise at
70 ꢀC. The mixture was heated at 70 ꢀC for 2 h and the potassium
carbonate was added (0.01 mol). The reaction was stirred at 70 ꢀC
for 1 h more. The mixture was poured onto water (100 mL) with
good stirring. The precipitate was filtered, washed with water, and
16. El-Sayed, A. M.; El-Saghier, A. M. M.; Mohamed, M. A. A.; El-Shafei, A. K. Gazz.
Chim. Ital. 1997, 127, 605.