pubs.acs.org/joc
a novel Ni-catalyzed three-component cocyclization reaction
Nickel-Catalyzed [3þ2þ2] Cycloaddition of Ethyl
Cyclopropylideneacetate and Heteroatom-
Substituted Alkynes: Application to Selective
Three-Component Reaction with 1,3-Diynes
among two alkynes and ethyl cyclopropylideneacetate (1),
which provides cycloheptadiene derivatives.3 Interestingly,
the reaction proceeded selectively even when two different
alkynes were applied.3b To take advantage of this trait, we
expanded the scope of this reaction by carrying out the three-
component cocyclization reaction between 1, alkynes, and
conjugated alkynes, such as 1,3-diynes3g or enynes.3h For
example, the chemo- and regioselective three-component
cocyclization reaction among 1, 1,3-diyne, and terminal al-
kynes proceeded (eq 1). Since the cocyclization reaction
between 1 and 1,3-diyne was obtained with low selectivity,
the delicate balance between steric and electronic factors of
each component is important for the selective cocyclization.
To expand the scope of the three-component reaction, we
selected heteroatom-substituted alkynes, such as ynol ether,4
ynamide, and ynamines,5 as the substrates.6,7 These hetero-
atom-substituted alkynes would be suitable substrates for
the synthesis of various cycloheptane derivatives such as
cycloheptanones. In this paper, we disclose the [3 þ 2 þ 2]
cocyclization of ynol ether and ynamines, especially focused
on the three-component reaction with 1,3-diynes.
Ryu Yamasaki, Natsuki Terashima, Ikuo Sotome,
Shunsuke Komagawa, and Shinichi Saito*
Department of Chemistry, Faculty of Science, Tokyo
University of Science, Kagurazaka, Shinjuku, Tokyo,
Japan 162-8601
Received October 19, 2009
Heteroatom-substituted alkynes such as ynol ethers and
ynamines turned out to be decent substrates for the Ni-
catalyzed [3 þ 2 þ 2] cocyclization of ethyl cyclopropy-
lideneacetate (1). The three-component cocyclization of
1, 1,3-diynes, and heteroatom-substituted alkynes also
proceeded selectively. The study provided an efficient
method for the synthesis of heteroatom-substituted cy-
cloheptadiene and related compounds.
As a start of this study, we used ynol ethers as the alkyne
component. The [3 þ 2 þ 2] cocyclization reaction of 1 and
ynol ethers (5a-c)8 proceeded smoothly in the presence of a
catalytic amount of Ni(cod)2 and PPh3. Though we observed
the formation of 6 as the product, the E/Z isomers were
inseparable and it turned out that the fast isomerization of 6
proceeded during the purification. Compound 6 could be
converted to a more stable compound, a cyclohept-4-ene-1,3-
dione derivative (7), by treating the crude product with TFA.3i
The multicomponent reaction that allows one to construct
complex structures in a single step or construct a large
compound library is a very powerful and attractive synthetic
strategy.1,2 As one of this type of reactions, we have developed
(4) For a review of the reaction of ynolate and ynol ether, see: Shindo, M.
Tetrahedron 2007, 63, 10–36.
(5) For reviews of the reaction of ynamine and ynamide, see: (a) Ficini, J.
Tetrahedron 1976, 32, 1449–1486. (b) Zificsak, C. A.; Mulder, J. A.; Hsung,
R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57, 7575–7606.
(6) For representative examples of the reactions of ynol ether in the
ꢀ
€
presence of transition metals, see: (a) Castro, J.; Sorensen, H.; Riera, A.;
(1) (a) Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-VCH:
ꢁ
Wenheim, Germany, 2005. (b) D'Souza, D. M.; Muller, T. J. J. Chem. Soc. Rev.
2007, 36, 1095-1108 and references cited therein.
(2) For reviews on Ni-catalyzed multicomponent reactions, see:
(a) Ikeda, S.-i. Acc. Chem. Res. 2000, 33, 511–519. (b) Montogomery, J.
Acc. Chem. Res. 2000, 33, 467–473.
Morin, C.; Moyano, A.; Pericas, M. A.; Greene, A. E. J. Am. Chem. Soc.
1990, 112, 9388–9389. (b) Imbriglio, J. E.; Rainier, J. D. Tetrahedron Lett.
2001, 42, 6987–6990. (c) Sanapo, G. F.; Daoust, B. Tetrahedron Lett. 2008,
49, 4196–4199. (d) Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.;
Rominger, F.; Oeser, T. Chem.;Eur. J. 2008, 14, 6672–6678.
(3) (a) Saito, S.; Masuda, M.; Komagawa, S. J. Am. Chem. Soc. 2004, 126,
10540–10541. (b) Komagawa, S.; Saito, S. Angew. Chem., Int. Ed. 2006, 45,
2446–2449. (c) Saito, S.; Takeuchi, K. Tetrahedron Lett. 2007, 48, 595–598.
(d) Maeda, K.; Saito, S. Tetrahedron Lett. 2007, 48, 3173–3176. (e) Saito, S.;
Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114–
9120. (f) Komagawa, S.; Yamasaki, R.; Saito, S. J. Synth. Org. Chem. Jpn.
2008, 66, 974–982. (g) Yamasaki, R.; Sotome, I.; Komagawa, S.; Azumaya,
I.; Masu, H.; Saito, S. Tetrahedron Lett. 2009, 50, 1143–1145. (h) Komogawa,
S.; Takeuchi, K.; Sotome, I.; Azumaya, I.; Masu, H.; Yamasaki, R.; Saito, S.
J. Org. Chem. 2009, 74, 3323–3329. (i) Fukusaki, Y.; Miyazaki, J.; Azumaya,
I.; Katagiri, K.; Komagawa, S.; Yamasaki, R.; Saito, S. Tetrahedron 2009,
65, 10631–10636.
(7) For typical examples of the reaction of ynamine or ynamide with
transition metal, see: (a) Ficini, J.; d’Angelo, J.; Falou, S. Tetrahedron Lett.
1977, 19, 1645–1648. (b) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed.
ꢀ
ꢁ
1998, 37, 489–492. (c) Balsells, J.; Vazquez, J.; Moyano, A.; Pericas, M. A.;
Riera, A. J. Org. Chem. 2000, 65, 7291–7301. (d) Domınguez, G.; Casarru-
guez-Noriega, J.; Perez-Catells, J. Helv. Chim. Acta 2002, 85,
´
ꢀ
bios, L.; Rodrı
´
2856–2861. (e) Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc.
2006, 128, 4586–4587. (f) Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P.
Adv. Synth. Catal. 2006, 348, 2437–2442. (g) Saito, N.; Katayama, T.; Sato,
Y. Org. Lett. 2008, 10, 3829–3832.
(8) Moyano, A.; Charbonnier, F.; Greene, A. E. J. Org. Chem. 1987, 52,
2919–2922.
480 J. Org. Chem. 2010, 75, 480–483
Published on Web 12/16/2009
DOI: 10.1021/jo902251m
r
2009 American Chemical Society