Springer, Dordrecht, 2005, ch 17, p. 605; F. Fages, F. Vogtle and
¨
M. Zinic, Top. Curr. Chem., 2005, 256, 77; T. Ishi-i and S. Shinkai,
´
Top. Curr. Chem., 2005, 258, 119; A. Brizard, R. Oda and I. Huc,
Top. Curr. Chem., 2005, 256, 167; A. Friggeri, B. L. Feringa and
J. van Esch, J. Controlled Release, 2004, 97, 241; D. Chitkara,
A. Shikanov, N. Kumar and A. J. Domb, Macromol. Biosci., 2006,
6, 977; R. G. Ellis-Behnke, Y.-X. Liang, S.-W. You, D. K. C. Tay,
S. Zhang, K.-F. So and G. E. Schneider, Proc. Natl. Acad. Sci. U. S. A.,
2006, 103, 5054; A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith,
Angew. Chem., Int. Ed., 2008, 47, 8002.
2 L. A. Estroff, L. Leiserowitz, L. Addadi, S. Weiner and
A. D. Hamilton, Adv. Mater., 2008, 15, 380; L. A. Estroff
and A. D. Hamilton, Chem. Rev., 2004, 104, 1201; L. A. Estroff
and A. D. Hamilton, Angew. Chem., Int. Ed., 2000, 39, 3447;
K. J. C. van Bommel, C. van der Pol, I. Muizebelt, A. Frigerri,
A. Heeres, A. Meetsma, B. L. Feringa and J. van Esch, Angew.
Chem., Int. Ed., 2004, 43, 1663; D. K. Kumar, D. A. Jose,
P. Dastidar and A. Das, Langmuir, 2004, 20, 10413;
A. Srivastava, S. Ghorai, A. Bhattacharjya and S. Bhattacharya,
J. Org. Chem., 2005, 70, 6574; Y. J. Yun, S. M. Park and
B. H. Kim, Chem. Commun., 2003, 254; Z. Yang, H. Gu,
Y. Zhang, L. Wang and B. Xu, Chem. Commun., 2004, 208.
3 M. McWatt and J. Boons, Eur. J. Org. Chem., 2001, 2535;
R. Iwaura, K. Yoshida, M. Masuda, K. Yases and T. Shimizu,
Chem. Mater., 2002, 14, 3047; G. Wang and A. D. Hamilton,
Chem. Commun., 2003, 310; M. Suzuki, S. Owa, M. Yumoto,
M. Kimura, H. Shirai and K. Hanabusa, Tetrahedron Lett., 2004,
45, 5399; S. Kiyonaka, S. Shinkai and I. Hamachi, Chem.–Eur. J.,
2003, 9, 976; Z. Yang, G. Liang and B. Xu, Acc. Chem. Res., 2008,
41, 215.
Fig. 5 Variation of gel-to-sol transition temperature (TGS) of 1 with
concentration, and with [NaCl] in 20 mM phosphate buffer, pH 7.4.
neutral or alkaline pH the COOH group is dissociated, the
intermolecular interactions become weaker, and hence the TGS
value decreases. The decrease of TGS value with [NaCl] (Fig. 5)
suggests that the hydrogels become thermally less stable upon
addition of salt. This, as discussed above, can be attributed to
increased solubility of the zwitterionic amphiphiles in the
presence of salt.
4 A. Heeres, C. van der Pol, M. Stuart, A. Friggeri, B. L. Feringa
and J. Van Esch, J. Am. Chem. Soc., 2003, 125, 14252;
H. Kobayashi, A. Friggeri, K. Kumoto, M. Amaike, S. Shinkai
and D. N. Reinhoudt, Org. Lett., 2002, 4, 1423; D. Khatua,
R. Maiti and J. Dey, Chem. Commun., 2006, 4903; N. Shi,
H. Dong, G. Yin, Z. Xu and S. Li, Adv. Funct. Mater., 2007, 17,
1837; F. Fages, Angew. Chem., Int. Ed., 2006, 45, 1680;
C. E. Stanley, N. Clarke, K. M. Anderson, J. A. Elder,
J. T. Lenthall and J. W. Steed, Chem. Commun., 2006, 3199;
G. O. Lloyd and J. W. Steed, Nat. Chem., 2009, 1, 437.
5 D. J. Pochan, J. P. Schneider, J. Kretsinger, B. Ozbas,
K. Rajagopal and L. Haines, J. Am. Chem. Soc., 2003, 125,
11802; J. P. Schneider, D. J. Pochan, B. Ozbas, K. Rajagopal,
L. Pakstis and J. Kretsinger, J. Am. Chem. Soc., 2002, 124, 15030;
B. Ozbas, J. Kretsinger, K. Rajagopal, J. P. Schneider and
D. J. Pochan, Macromolecules, 2004, 37, 7331; H. Yang, H. Liu,
H. Kang and W. Tan, J. Am. Chem. Soc., 2008, 130, 6320.
6 R. N. Mitra, D. Das, S. Roy and P. K. Das, J. Phys. Chem. B,
2007, 111, 14107; D. Das, A. Dasgupta, S. Roy, R. N. Mitra,
S. Debnath and P. K. Das, Chem.–Eur. J., 2006, 12, 5068.
7 R. Kohen, Y. Yamamoto, K. C. Cundy and B. N. Ames, Proc.
Natl. Acad. Sci. U. S. A., 1988, 85, 3175.
In summary, we have developed a peptide based LMWG
that efficiently gelates water at a concentration less than 1% (w/v).
Also the hydrogelation ability in a wide pH range shows its
versatility. The hydrogels entrap a relatively large amount of
water in a thermoreversible manner. The p–p stacking inter-
action of the phenyl rings in the hydrocarbon chain of the
amphiphiles was found to be essential for the gelation. The
gelation occurred as a result of entanglement of twisted
ribbons that are formed by the self-assembly of the amphiphilic
molecules. These ribbons are comprised of interdigitated
bilayer aggregates. Although the hydrogels are quite stable
in the presence of salt and alcohol the gelation properties can
be modulated by changing pH, salt and alcohol concentration.
The hydrogels in different pH media have melting temperatures
higher than the physiological temperature. Thus the hydrogel
may have potential application in drug delivery.
We thank Department of Science and Technology,
New Delhi (SR/S1/PC-18/2005) for financial support of this
work. A. P. thanks IIT, Kharagpur for a research fellowship.
8 E. A. Decker, A. D. Crum and J. T. Calvert, J. Agric. Food Chem.,
1992, 40, 756.
9 T. A. Dahl, W. R. Midden and P. E. Hartman, Photochem.
Photobiol., 1988, 47, 357.
10 D. O. Lambeth, G. R. Ericson, M. A. Yorek and P. D. Ray,
Biochim. Biophys. Acta, 1982, 719, 501; H. Murase, A. Nagao and
J. Terao, J. Agric. Food Chem., 1993, 41, 1601.
11 The length of the hydrophobic chain (including the benzene ring)
was calculated using the MM2 program of CS Chem3D Std
software.
Notes and references
1 D. K. Smith, Chem. Soc. Rev., 2009, 38, 684; S. Bhattacharya,
U. Maitra, S. Mukhapadhyay and A. Srivastava, Advances in
Molecular Hydrogels, in Molecular Gels: Materials with Self-
Assembled Fibrillar Networks, ed. R. G. Weiss and P. Terech,
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6997–6999 | 6999