Synthetic Applications of Pd(II)-Catalyzed C-H Carboxylation
A R T I C L E S
Scheme 1. Anthranilic Acids as Precursors of Heterocyclic
Frameworks
Scheme 2. Examples of Drugs and Natural Products Arising from
Anthranilic Acids
serve as precursors for benzoxazinone natural products, which
display a variety of biological activities.16 In addition, readily
available acyl-protected aniline derivatives can be utilized
as substrates for their synthesis via carboxylation, in which
case the acyl protecting group is incorporated into the target
molecule, thereby avoiding additional steps which are gener-
ally required for the installation and removal of directing
groups in various C-H activation methodologies.17 In light
of their growing promise in drug discovery,18 diverse
synthetic methods have been developed with anthranilic acids
as one of the crucial constituents to access these heterocyclic
cores.19 The development of synthetic analogues is, unfor-
tunately, restricted to only a few targets due to the lack of
general procedures to prepare anthranilic acid derivatives.20
Herein, we disclose an unprecedented carboxylation reaction
of anilides using a C-H activation/CO insertion sequence
to give N-acyl-protected anthranilic acids. The use of simple
anilide substrates also allows for atom-economical, expedient,
and diversifying preparations of benzoxazinones and quinazoli-
nones from a combination of readily available starting
materials: anilines and benzoic acid derivatives (Scheme 1).
at 1 atm of CO to prepare benzolactams where the substrate
was used as the limiting reagent.8 Despite this new develop-
ment and other previous reports,9 Pd(II)-catalyzed C-H
activation/carbonylation under a CO environment remains an
outstanding challenge since Pd(II) catalysts are readily
reduced by CO10 and alternate catalytic systems are often
adopted.11 For example, Chan et al. have recently reported
an elegant Pd(II)-catalyzed esterification of sp2 C-H bonds
in a variety of aromatic substrates using diethyl azodicar-
boxylate as the ethoxycarbonylating reagent.11a
With our success in the Pd(II)-catalyzed regioselective
carboxylation of aryl and vinyl carboxylic acids under 1 atm
of CO,12 we embarked on extending the scope of this reaction
protocol to other molecular structures. We were specifically
interested in streamlining the protocol toward the synthesis
of molecules of biological and medicinal importance. As
such, we primarily focused our research on the construction
of anthranilic acid derivatives since they are widely utilized
in the synthesis of heterocyclic natural products and mol-
ecules of biological significance. Anthranilic acid derivatives
also constitute an essential motif in the heterocyclic frame-
work of quinazoline, quinoline, and acridinone alkaloids
(Scheme 1).13 These heterocyclic scaffolds are privileged
structures14 in medicinal chemistry, and therapeutic agents
with such cores are on the market or in clinical trials for the
treatment of cancer (Scheme 2).15 Moreover, anthranilic acids
2. Results
2.1. Preparation of Anthranilic Acid Derivatives. Early
investigations were discouraging since acetanilide 1 failed to
undergo ortho-carboxylation under the standard conditions
recently developed in our laboratory for carboxylic acids (Table
1, entry 1).12 It is well known from the pioneering works of
Tremont,21 de Vries,22 and Daugulis23 that anilides are amenable
to ortho-C-H cleavage with Pd(II) catalysts under a number
(8) Orito, K.; Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.;
Yuguchi, M.; Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004,
126, 14342–14343.
(16) (a) Hsieh, P. W.; Chang, F. R.; Chang, C. H.; Cheng, P. W.; Chiang,
L. C.; Zeng, F. L.; Lin, K. H.; Wu, Y. C. Bioorg. Med. Chem. Let.
2004, 14, 4751–4754. (b) Krantz, A.; Spencer, R. W.; Tam, T. F.;
Liak, T. J.; Copp, L. J.; Thomas, E. M.; Rafferty, S. P. J. Med. Chem.
1990, 33, 464–479.
(9) For the carbonylation of C-H bonds by other metals, see: (a) Mori,
Y.; Tsuji, J. Tetrahedron 1971, 27, 3811–3819. (b) Kunin, A. J.;
Eisenberg, R. J. Am. Chem. Soc. 1986, 108, 535–536. (c) Moore, E.;
Pretzer, W. R.; O’Connell, J. H.; LaBounty, L.; Chou, L.; Grimmer,
S. S. J. Am. Chem. Soc. 1992, 114, 5888–5890. (d) Choi, J.-C.;
Kobayashi, Y.; Sakakura, T. J. Org. Chem. 2001, 66, 5262–5263. (e)
Funk, J. K.; Yennawar, H.; Sen, A. HelV. Chim. Acta 2006, 89, 1687–
1695. (f) Imoto, S.; Uemura, T.; Kakiuchi, F.; Chatani, N. Synlett 2007,
170–172.
(17) (a) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem. Int. Ed. 2005, 44,
2112. (b) Giri, R.; Liang, J.; Lei, J. G.; Li, J. J.; Wang, D. H.; Chen,
X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2005, 44, 7420. (c) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu,
J.-Q. Org. Lett. 2006, 8, 5685.
(18) Tilloquin, F. Phytochem. ReV. 2007, 6, 65–79.
(19) (a) Pereira, M. D.; Thiery, V.; Besson, T. Tetrahedron 2007, 63, 847–
854. (b) Gil, C.; Brase, S. Chem.sEur. J. 2005, 11, 2680–2688. (c)
Griffin, R. J.; Srinivasan, S.; Bowman, K.; Calvert, A. H.; Curtin,
N. J.; Newell, D. R.; Pemberton, L. C.; Golding, B. T. J. Med. Chem.
1998, 41, 5247–5256.
(10) Moiseev, I. I. Pure Appl. Chem. 1989, 61, 1755–1762.
(11) For the use of diethyl azodicarboxylate as the ethoxycarbonylating
reagent, see: (a) Yu, W. Y.; Sit, W. N.; Lai, K. M.; Zhou, Z. Y.;
Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304–3306. For
carboxylation with CO2, see: (b) Reference 5. (c) Sugimoto, H.;
Kawata, I.; Taniguchi, H.; Fujiwara, Y. J. Organomet. Chem. 1984,
266, C44–C46. For carboxylation with formic acid, see: (d) Shibahara,
F.; Kinoshita, S.; Nozaki, K. Org. Lett. 2004, 6, 2437–2439. (e)
Sakakibara, K.; Yamashita, M.; Nozaki, K. Tetrahedron Lett. 2005,
46, 959–962.
(20) (a) Kamal, A.; Shankaraiah, N.; Markandeya, N.; Reddy, C. S. Synlett
2008, 129, 7–1300. (b) Zhou, Z. L.; Kher, S. M.; Cai, S. X.;
Whittemore, E. R.; Espitia, S. A.; Hawkinson, J. E.; Tran, M.;
Woodward, R. M.; Weber, E.; Keana, J. F. W. Bioorg. Med. Chem.
2003, 11, 1769–1780.
(12) Giri, R.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130, 14082–14083.
(13) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166–187.
(14) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. ReV. 2003, 103,
893–930.
(21) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759–
5760.
(22) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer,
P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem.
Soc. 2002, 124, 1586–1587.
(15) For example, Raltitrexed (Tomudex, marketed for colorectal cancer),
Ispinesib (phase II for solid tumors), and Tempostatin (phase II for
bladder cancer).
(23) Zaitsev, V. G.; Daugulis, A. J. Am. Chem. Soc. 2005, 127, 4156–
4157.
9
J. AM. CHEM. SOC. VOL. 132, NO. 2, 2010 687