10.1002/adsc.201801185
Advanced Synthesis & Catalysis
Experimental Section
[3] a) F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B.
C. Shook, J. Med. Chem. 2010, 53, 7902-7917; b) J. P.
Ferris, in: The Chemistry of the Cyano Group, (Eds.: Z.
Rappoport), John Wiley & Sons Ltd, New York, 1970,
pp. 718-739.
1. General Procedure for Synthesis of quinoline N-
oxides
Representative Procedure: To a mixture of quinoline (1.3
g, 10.0 mmol) in AcOH (20 mL) was added H2O2 (30 wt%,
1.40 mL) at room temperature. The reaction mixture was
stirred at 70 °C for 36 h, and then was cooled to room
temperature. The product was extracted with dichloromethane
(3 × 20 mL), and the combined organic layers were dried
over Na2SO4. The solvent was removed under reduced
pressure, and the residue obtained was purified via silica
gel chromatography (eluent: ethyl acetate/methanol = 8/1)
to afford quinoline N-oxide (1a) as a yellowish solid (1.3 g,
90%).
[4] a) R. C. Larock, T. Yao, in: Comprehensive Organic
Transformations: A Guide to Functional Group
Preparations, (Eds.: R. C. Larock), John Wiley& Sons,
New York, 1989. pp 819-995; b) A. J. Fatiadi, in:
Triple-Bonded Functional Groups, 1st ed., Vol. 2 (Eds.:
S. Patai, Z, Rapporoport), John Wiley & Sons Ltd,
Chichester, 1983, pp. 1057-1303.
[5] a) T. Horino, Y. Hatakeyama, O. Ichii, T. Matsumoto,
Y. Shimamura, K. Inoue, Y. Terada, Y. Okuhara, Clin.
Exp. Nephrol. 2018, 22, 337-345; b) O. Mizenina, M.
Hsu, N. Jean-Pierre, M. Aravantinou, K. Levendosky,
G. Paglini, T. M. Zydowsky, M. Robbiani, J. A.
Fernandez-Romero, Drug. Deliv. Transl. Re. 2017, 7,
859-866; c) Y. N. Song, H. Xu, W. Chen, P. Zhan, X.
Liu, Medchemcomm. 2015, 6, 61-74; d) J. Bruix, S. K.
Qin, P. Merle, A. Granito, Y. H. Huang, G. Bodoky, M.
Pracht, O. Yokosuka, O. Rosmorduc, V. Breder, R.
Gerolami, G. Masi, P. J. Ross, T. Q. Song, J. P.
Bronowicki, I. Ollivier-Hourmand, M. Kudo, A. L.
Cheng, J. M. Llovet, R. S. Finn, M. A. LeBerre, A.
Baumhauer, G. Meinhardt, G. H. Han, I. Resorce,
Lancet. 2017, 389, 56-66; e) L. Lannfelt, K. Blennow,
H. Zetterberg, S. Batsman, D. Ames, J. Hrrison, C. L.
Masters, S. Targum, A. I. Bush, R. Murdoch, J. Wilson,
C. W. Ritchie, P. E. S. Grp, Lancet. Neurol. 2008, 7,
779-786; f) M. J. McKay, A. R. Carroll, R. J. Quinn, J.
Nat. Prod. 2005, 68, 1776-1778.
2. General procedure for the synthesis of 2-
cyanoquinolines
Representative Procedure: A 10 mL screw-cap vial
charged with quinoline N-oxides (58.1 mg, 0.4 mmol),
TMSCN (119.1 mg, 1.2 mmol), PIDA (386.5 mg, 1.2
mmol) and anhydrous DCE (6 ml), the mixture was stirred
o
at 80 C temperature for 6-7 h. After completion of the
reaction, the solution was extracted with dichloromethane
(3×20 mL). Organic layers were combined and dried over
Na2SO4, filtered and concentrated under reduced pressure.
The crude material was separated on a silica gel column
with petroleum ether/ethyl acetate (1/5) as the eluent to get
product quinoline-2-carbonitrile (2a) as a white solid (45.0
mg, 73%).
Acknowledgements
We are grateful for financial support from the Research Project
of the Natural Science Foundation of Heilongjiang Province of
China (No. B2018012).
[6] a) T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17,
1633-1635; b) T. Sandmeyer, Chem. Ber. 1884, 17,
2650-2653.
References
[1] a) X. F. Shang, S. L. Morris-Natschke, Y. Q. Liu, X.
Gou, X. S. Xu, M. Goto, J. C. Yang, K. H. Lee, Med.
Res. Rev. 2018, 38, 775-828; b) E.Vitaku, D. T. Smith,
J. T.Njardarson. J. Med. Chem. 2014, 57, 10257-10274;
c) R. A. Hughes, C. J. Moody, Angew. Chem. Int. Ed.
2007, 46, 7930-7954; d) S. P. Wang, Z. Cheng, X. X.
Song. X. J. Yan, K. Q. Ye, Y. Liu, G. C. Yang, Y.
Wang, Acs. Appl. Mater. Inter. 2017, 9, 9892-9901; e)
M. Kim, S. K. Jeon, S. H. Hwang, J. Y. Lee, Adv.
Mater. 2015, 27, 2515-2520.
[7] K. W. Rosenmund, E. Struck, Chem. Ber. 1919, 2,
1749-1756.
[8] a) Z. L. Li, K. K. Sun, C. Cai, Org. Chem. Front. 2018,
5, 1848-1853; b) D. G. Yu, T. Gensch, F. de Azambuja,
S. Vasquez-Cespedes, F. Glorius, J. Am. Chem. Soc.
2014, 136, 17722-17725; c) S. Xu, X. Huang, X. Hong,
B. Xu, Org. Lett. 2012, 14, 4614-4617; d) Y. Nagase, T.
Sugiyama, S. Nomiyama, K. Yonekura, T. Tsuchimoto,
Adv. Synth. Catal. 2014, 356, 347-352.
[9] Y. Tagawa, Y. Higuchi, K. Yamagata, K. Shibata, D.
[2] a) T. E. Wellems, Science. 2002. 298, 124-126; b) R. G.
Ridley, Nature. 2002, 415, 686-693; c) I. Morgado-
Palacin, A. Day, M. Murga, V. Lafarga, M. Elena
Anton, A. Tubbs, H. T. Chen, A. V. Ergen, R.
Anderson, A. Bhandoola, K. G. Pike, B. Barlaam, E.
Cadogan, X. Wang, A. J. Pierce, C. Hubbard, S. A.
Armstrong, A. Nussenzweig, O. Fernandez-Capetillo,
Sci. Signal. 2016, 9, 91-100; d) M. Paolino, A. Choidas,
S. Wallner, B, Pranjic, I. Uribesalgo, S. Loeser, A. M.
Jamieson, W. Y. Langdon, F. Ikeda, J. P. Fededa, S. J.
Cronin, R. Nitsch, C. Schultz-Fademrecht, J. Eickhoff,
S. Menninger, A. Unger, R. Torka, T. Gruber, R.
Hinterleitner, G. Baier, D. Wolf, A. Ullrich, B. M.
Klebl, J. M. Penninger, Nature. 2014, 507, 508-512.
Teshima, Heterocycles. 2004, 63, 2859-2862.
[10] a) P. Y. Liu, C. Zhang, S. C. Zhao, F. Yu, F. Li, Y. P.
He, J. Org. Chem. 2017, 82, 12786-12790; b) D. Zhu,
D. Chang, L. Shi, Chem. Comm. 2015, 51, 7180-7183;
c) S. S. Kong, L. Q. Zhang, X. L. Dai, L. Z. Tao, C. S.
Xie, L. Shi, M. Wang, Adv. Synth. Catal. 2015, 357,
2453-2456; d) T. Dohi, K. Morimoto, Y. Kiyono, H.
Tohma, Y. Kita, Org. Lett. 2005, 7, 537-540; e) H.
Shen, X. H. Zhang, Q. Liu, J. Pan, W. Hu, Y. Xiong, X.
M. Zhu, Tetrahedron. Lett. 2015, 56, 5628-5631; f) M.
X. Sun, Y. F. Wang, B. H. Xu, X. Q. Ma, S. J. Zhang,
Org. Biomol. Chem. 2018, 16, 1971-1975.
5
This article is protected by copyright. All rights reserved.