of v-abl tyrosine protein kinase (III).7 Thus, facile prepara-
tion of chromone derivatives remains an essential research
topic in organic synthesis.
Our synthetic strategy was acquired from the observation
of two NHC-catalyzed reactions (Scheme 1): the reaction
It is evident from prior research that the synthesis of the
chromone scaffold often suffers lengthy steps, harsh reaction
conditions, and absence of diversified substrate scope. The
potential utility of 3-aminochromones has prompted organic
chemists to look for alternatives to replace conventional
chromone syntheses.8 In this context, the N-heterocyclic
carbene (NHC) catalyzed carbon-carbon bond formation
strategy is, in our opinion, a more attractive and innovative
approach.9 This approach generally facilitates the reactions
such as benzoin condensation,10 aza-benzoin condensation,11
Stetter reaction,12addition reactions to homoenoloate inter-
mediate,13 intramolecular nucleophilic addition of carbonyl
anion,14 etc. These reactions involve an alternating acceptor
and donor reactivity pattern called umpolung,9 which de-
velops a new carbon-carbon bond and shortens the con-
ventional synthetic routes in organic synthesis. Thus we felt
that this umpolung derived strategy would allow the synthesis
of 3-aminochromones in an expeditious manner.
Scheme 1
.
Blueprint for NHC-Catalyzed C-C Bond Formation
Strategy
between two aldehydes (Benzoin condensation, eq 1) and
between an aldehyde and an imine (aza-benzoin condesation,
eq 2). The central core of both the reactions is trivial variation
of polarity of the carbonyl and imine bonds which is
effortlessly attacked by the Breslow intermediate15 to form
a carbon-carbon bond. We envisioned that this umpolung
derived reactivity could be applied to the intramolecular
carbon-carbon bond formation reaction between aldehyde
and nitrile, which would significantly simplify traditional
synthetic routes and allow an easy access to diversity-oriented
3-aminochromones (eq 3).
(5) Quiney, C.; Dauzonne, D.; Kern, C.; Fourneron, J.-D.; Izard, J.-C.;
Mohammad, R. M.; Kolb, J.-P.; Billard, C. Leukemia Res. 2004, 28, 851–
861.
(6) Beudot, C.; De Me´o, M. P.; Dauzonne, D.; Elias, R.; Laget, M.;
Guiraud, H.; Balansard, G.; Dume´nil, G. Mutat. Res. 1998, 417, 141–153.
(7) Geissler, J. F.; Roesel, J. L.; Meyer, T.; Trinks, U. P.; Traxler, P.;
Lydon, N. B. Cancer Res. 1992, 52, 4492–4498.
(8) (a) Fride´n-Saxin, M.; Pemberton, N.; da Silva Andersson, K.;
Dyrager, C.; Friberg, A.; Grøtli, M.; Luthman, K. J. Org. Chem. 2009, 74,
2755–2759. (b) Bauvois, B.; Puiffe, M.-L.; Bongui, J.-B.; Paillat, S.;
Monneret, C.; Dauzonne, D. J. Med. Chem. 2003, 46, 3900–3913. (c)
DeWald, H. A.; Heffner, T. G.; Jaen, J. C.; Lustgarten, D. M.; McPhail,
A. T.; Meltzer, L. T.; Pugsley, T. A.; Wise, L. D. J. Med. Chem. 1990, 33,
445–450.
Our initial efforts were focused on the systematic evalu-
ation of various catalysts and reaction conditions to optimize
(9) (a) Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. ReV. 2008, 37,
2691–2698. (b) Marion, N.; D´ıez-Gonza´lez, S.; Nolan, S. P. Angew. Chem.,
Int. Ed. 2007, 46, 2988–3000. (c) Enders, D.; Niemeier, O.; Henseler, A.
Chem. ReV. 2007, 107, 5606–5655. (d) Seayad, J.; List, B. Org. Biomol.
Chem. 2005, 3, 719–724. (e) Vijay, N.; Santhamma, B.; Vellalath, S. Angew.
Chem., Int. Ed. 2004, 43, 5130–5135. (f) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138–5175. (g) Enders, D.; Balensiefer, T. Acc.
Chem. Res. 2004, 37, 534–541. (h) Grasa, G. A.; Singh, R.; Nolan, S. P.
Synthesis 2004, 971–985. (i) Seebach, D. Angew. Chem., Int. Ed. 1979, 18,
239–258.
(12) (a) DiRocco, D. A.; Oberg, K. M.; Dalton, D. M.; Rovis, T. J. Am.
Chem. Soc. 2009, 131, 10872–10874. (b) Rovis, T. Chem. Lett. 2008, 37,
2–7. (c) de Alaniz, J. R.; Kerr, M. S.; Moore, J. L.; Rovis, T. J. Org. Chem.
2008, 73, 2033–2040. (d) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128,
2552–2553. (e) Reynolds, N. T.; Rovis, T. Tetrahedron 2005, 61, 6368–
6378. (f) Mennen, S. M.; Blank, J. T.; Tran-Dube´, M. B.; Imbriglio, J. E.;
Miller, S. J. Chem. Commun. 2005, 195–197. (g) Mattson, A. E.; Bharadwaj,
A. R.; Scheidt, K. A. J. Am. Chem. Soc. 2004, 126, 2314–2315. (h) Kerr,
M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876–8877. (i) Barrett,
A. G. M.; Love, A. C.; Tedeschi, L. Org. Lett. 2004, 6, 3377–3380. (j)
Raghavan, S.; Anuradha, K. Synlett 2003, 711–713. (k) Kerr, M. S.; Rovis,
T. Synlett 2003, 1934–1936. (l) Raghavan, S.; Anuradha, K. Tetrahedron
Lett. 2002, 43, 5181–5183. (m) Kerr, M. S.; Read de Alaniz, J.; Rovis, T.
J. Am. Chem. Soc. 2002, 124, 10298–10299. (n) Braun, R. U.; Zeitler, K.;
Muller, T. J. J. Org. Lett. 2001, 3, 3297–3300. (o) Ciganek, E. Synthesis
1995, 1311–1314. (p) Stetter, H. Angew. Chem., Int. Ed. 1976, 15, 639–
647. (q) Stetter, H.; Kuhlmann, H. Synthesis 1975, 379–380. (r) Stetter,
H.; Schreckenberg, M. Angew. Chem., Int. Ed. 1973, 12, 81.
(10) (a) Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org.
Chem. 2009, 74, 9214-9217. (b) Enders, D.; Niemeier, O.; Raabe, G. Synlett
2006, 2431–2434. (c) Enders, D.; Niemeier, O.; Balensiefer, T. Angew.
Chem., Int. Ed. 2006, 45, 1463–1467. (d) Hachisu, Y.; Bode, J. W.; Suzuki,
K. AdV. Synth. Catal. 2004, 346, 1097–1100. (e) Hachisu, Y.; Bode, J. W.;
Suzuki, K. J. Am. Chem. Soc. 2003, 125, 8432–8433. (f) Enders, D.;
Kallfass, U. Angew. Chem., Int. Ed. 2002, 41, 1743–1745. (g) White, M. J.;
Leeper, F. J. J. Org. Chem. 2001, 66, 5124–5131. (h) Heck, R.; Henderson,
A. P.; Ko¨hler, B.; Re´tey, J.; Golding, B. T. Eur. J. Org. Chem. 2001, 2623–
2627. (i) Iding, H.; Du¨nnwald, T.; Greiner, L.; Liese, A.; Mu¨ller, M.; Siegert,
P.; Gro¨tzinger, J.; Demir, A. S.; Pohl, M. Chem.sEur. J. 2000, 6, 1483–
1495. (j) Lo´pez-Calahorra, F.; Rubires, R. Tetrahedron 1995, 51, 9713–
9728. (k) Chen, Y. T.; Barletta, G. L.; Haghjoo, K.; Cheng, J. T.; Jordan,
F. J. Org. Chem. 1994, 59, 7714–7722. (l) Diederich, F.; Lutter, H. D.
J. Am. Chem. Soc. 1989, 111, 8438–8446. (m) Castells, J.; Lo´pez Calahorra,
F.; Domingo, L. J. Org. Chem. 1988, 53, 4433–4436. (n) Matsumoto, T.;
Ohishi, M.; Inoue, S. J. Org. Chem. 1985, 50, 603–606. (o) Lapworth, A.
J. Chem. Soc. 1903, 83, 995–996. (p) Wo¨hler, F.; Lie´big, J. Ann. Pharm.
1832, 3, 249–282.
(13) (a) Chiang, P.-C.; Rommel, M.; Bode, J. W. J. Am. Chem. Soc.
2009, 131, 8714–8718. (b) Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A.
J. Am. Chem. Soc. 2008, 130, 2416–2417. (c) Chan, A.; Scheidt, K. A.
J. Am. Chem. Soc. 2008, 130, 2740–2741. (d) Chiang, P. C.; Kaeobamrung,
J.; Bode, J. W. J. Am. Chem. Soc. 2007, 129, 3520–3521. (e) He, M.; Uc
Gerson, J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088–15089. (f)
Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006,
128, 8736–8737. (g) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131–3134.
(h) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205–6208.
(14) (a) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc.
2009, 131, 14190–14191. (b) He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She,
X. Tetrahedron 2008, 64, 8797–8800.
(11) (a) Li, G.-Q.; Dai, L.-X.; You, S.-L. Chem. Commun. 2007, 852–
854. (b) Mennen, S. M.; Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am.
Chem. Soc. 2005, 127, 1654–1655. (c) Li, W.; Lam, Y. J. Comb. Chem.
2005, 7, 644–647. (d) Mattson, A. E.; Scheidt, K. A. Org. Lett. 2004, 6,
4363–4366. (e) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.;
Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696–9697.
(f) Castells, J.; Lo´pez-Calahorra, F.; Bassedas, M.; Urrios, P. Synthesis 1988,
314–315.
(15) (a) Breslow, R.; Schmuck, C. Tetrahedron Lett. 1996, 37, 8241–
8242. (b) Breslow, R.; Kim, R. Tetrahedron Lett. 1994, 35, 699–702. (c)
Breslow, R.; Kool, E. Tetrahedron Lett. 1988, 29, 1635–1638. (d) Breslow,
R. J. Am. Chem. Soc. 1958, 80, 3719–3726.
Org. Lett., Vol. 12, No. 2, 2010
353