6964
K. S. MacMillan et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6962–6965
The DNA alkylation selectivity of the new analogues was exam-
DNA than its natural enantiomer, and both unnatural enantiomers
alkylated the same major site.
ined within a 150 base-pair segment of DNA utilized and described
previously (w794).24 The alkylation site identification and the
assessment of the relative selectivity among the available sites
were obtained by thermally-induced strand cleavage of the singly
50-end-labeled duplex DNA after exposure to the compounds as de-
tailed.5–8 Figure 3 illustrates the alkylation selectivity of both (+)-
and ent-(ꢁ)-CTI-TMI (7) alongside (+)- and ent-(ꢁ)-duocarmycin
SA. Satisfyingly, each enantiomer of 7 alkylated the same site as
its duocarmycin SA counterpart, displaying the same characteristic
and enantiomerically distinguishable selectivity. The natural enan-
tiomer, (+)-7, alkylated DNA with an efficiency not distinguishable
from (+)-duocarmycin SA, (+)-1, and appreciable alkylation was
seen at concentrations of 10ꢁ6 M (not shown). Like duocarmycin
SA, the unnatural enantiomer of 7 proved less efficient at alkylating
The CTI alkylation subunit was examined to establish whether
the magnitude of the effects observed with the MeCTI alkylation
subunit derived from a single atom replacement in the alkylation
subunit of CC-1065 would be similarly observed with duocarmycin
SA. The work presented herein demonstrates that replacing a pyr-
role NH of the alkylation subunit of duocarmycin SA with a sulfur
atom maintains or slightly enhances the biological potency of the
natural product, but not to the extent observed with MeCTI. Addi-
tionally, CTI-TMI alkylated DNA in a fashion identical to duocarmy-
cin SA, exhibiting the characteristic enantiomeric selectivities and
distinguishable enantiomeric efficiencies.
Acknowledgments
We gratefully acknowledge the financial support of the National
Institutes of Health (CA041986) and the Skaggs Institute for Chem-
ical Biology. K.S.M., J.P.L., and W.M.R. are Skaggs fellows.
Supplementary data
Full details of the synthesis of 6 and 7 and their experimental
examination are provided. Supplementary data associated with
this article can be found, in the online version, at doi:10.1016/
References and notes
1. Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto, I.; Yasuzawa,
T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037.
2. Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto,
I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915.
3. (a) Igarashi, Y.; Futamata, K.; Fujita, T.; Sekine, A.; Senda, H.; Naoki, H.;
Furumai, T. J. Antibiot. 2003, 56, 107; Structure revision: (b) Tichenor, M. S.;
Kastrinsky, D. B.; Boger, D. L. J. Am. Chem. Soc. 2004, 126, 8396.
4. Martin, D. G.; Biles, C.; Gerpheide, S. A.; Hanka, L. J.; Krueger, W. C.; McGovren,
J. P.; Mizsak, S. A.; Neil, G. L.; Stewart, J. C.; Visser, J. J. Antibiot. 1981, 34, 1119.
5. Duocarmycin SA: Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem. Soc. 1994,
116, 1635.
6. Yatakemycin: (a) Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarishi, Y.;
Boger, D. L. J. Am. Chem. Soc. 2003, 125, 10971; (b) Trzupek, J. D.; Gottesfeld, J.
M.; Boger, D. L. Nat. Chem. Biol. 2006, 2, 79; (c) Tichenor, M. S.; Trzupek, J. D.;
Kastrinsky, D. B.; Shiga, F.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2006, 128,
15683; (d) Tichenor, M. S.; MacMillan, K. S.; Trzupek, J. D.; Rayl, T. J.; Hwang, I.;
Boger, D. L. J. Am. Chem. Soc. 2007, 129, 10858.
7. CC-1065: (a) Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M. A.;
Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, 27, 3886; (b)
Hurley, L. H.; Warpehoski, M. A.; Lee, C.-S.; McGovren, J. P.; Scahill, T. A.; Kelly,
R. C.; Mitchell, M. A.; Wicnienski, N. A.; Gebhard, I.; Johnson, P. D.; Bradford, V.
S. J. Am. Chem. Soc. 1990, 112, 4633; (c) Boger, D. L.; Johnson, D. S.; Yun, W.;
Tarby, C. M. Bioorg. Med. Chem. 1994, 2, 115; (d) Boger, D. L.; Coleman, R. S.;
Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.;
Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623.
8. Duocarmycin A: (a) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos,
P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961; (b) Boger, D. L.; Ishizaki,
T.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 6645; (c) Boger, D. L.; Yun, W.;
Terashima, S.; Fukuda, Y.; Nakatani, K.; Kitos, P. A.; Jin, Q. Bioorg. Med. Chem.
Lett. 1992, 2, 759; (d) Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1993, 115, 9872; (e)
Boger, D. L.; Wysocki, R. J.; Ishisaki, T. J. Am. Chem. Soc. 1990, 112, 5230; (f)
Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H. J. Org. Chem. 1990, 55, 4499; (g) Boger,
D. L.; McKie, J. A.; Nishi, T.; Ogiku, T. J. Am. Chem. Soc. 1997, 119, 311.
9. Reviews: (a) Boger, D. L.; Johnson, D. S. Angew. Chem., Int. Ed. 1996, 35, 1438; (b)
Boger, D. L. Acc. Chem. Res. 1995, 28, 20; (c) Boger, D. L.; Johnson, D. S. Proc. Natl.
Acad. Sci. U.S.A. 1995, 92, 3642; (d) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res.
1999, 32, 1043; (e) Tichenor, M. S.; Boger, D. L. Nat. Prod. Rep. 2008, 25, 220; (f)
MacMillan, K. S.; Boger, D. L. J. Med. Chem. 2009, 52, 5771.
10. Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L.; McGovern, J.
P.; Praire, M. D.; Wienienski, N.; Wierenga, W. J. Med. Chem. 1988, 31, 590.
11. (a) Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Zarrinmayeh, H.; Kitos, P. A.;
Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem.-Biol. Interact. 1990, 73, 29;
(b) Boger, D. L.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. Proc.
Natl. Acad. Sci. U.S.A. 1991, 88, 1431; (c) Boger, D. L.; Munk, S. A.; Zarrinmayeh,
H. J. Am. Chem. Soc. 1991, 113, 3980; (d) Boger, D. L.; Johnson, D. S. J. Am. Chem.
Soc. 1995, 117, 1443; (e) Boger, D. L.; Zhou, J.; Cai, H. Bioorg. Med. Chem. 1996, 4,
859.
Figure 3. Thermally-induced strand cleavage of w794 DNA (144 bp, nucleotide no.
5238–138) after DNA–agent incubation with duocarmycin SA and CTI-TMI (24 h,
23 °C), removal of unbound agent by EtOH precipitation and 30 min thermolysis
(100 °C), followed by denaturing 8% PAGE and autoradiography. Lane 1, control
DNA; lanes 2–5, Sanger G, C, A, and
T sequencing standards; lane 6, (+)-
duocarmycin SA (1, 1 ꢀ 10ꢁ5 M); lane 7, (ꢁ)-duocarmycin SA (1 ꢀ 10ꢁ5 M); lanes
8 and 9, (+)-CTI-TMI and ent-(ꢁ)-CTI-TMI (7, 1 ꢀ 10ꢁ5 M).