10.1002/chem.201904678
Chemistry - A European Journal
COMMUNICATION
Kaiser, N. Maulide, J. Org. Chem. 2016, 81, 4421; Review on acyl-
Suzuki coupling: f) J. Buchspies, M. Szostak, Catalysts 2019, 9, 53.
Angew. Chem. Int. Ed. 2006, 45, 159; c) H. Ren, A. Krasovskiy, P.
Knochel, Org. Lett. 2004, 6, 4215; d) H. Ren, A. Krasovskiy, P. Knochel,
Chem. Comm. 2005, 543; e) C. Y. Liu, P. Knochel, Org. Lett. 2005, 7,
2543; f) H. Ren, P. Knochel, Chem. Comm. 2006, 726; g) C. Y. Liu, H.
Ren, P. Knochel, Org. Lett. 2006, 8, 617; h) A. H. Stoll. A. Krasovskiy,
P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 606; i) F. Kopp, S.
Wunderlich, P. Knochel, Chem. Comm. 2007, 2075; j) L. Melzig, C. B.
Rauhut, P. Knochel, Chem. Commun. 2009, 3536; k) C. Despotopoulou,
R. C. Bauer, A. Krasovskiy, P. Mayer, J. M. Stryker, P. Knochel, Chem.
Eur. J. 2008, 14, 2499; l) F. M. Piller, P. Appukkatan, A. Gavryushin, M.
Helm, P. Knochel, Angew. Chem. Int. Ed. 2008, 47, 6802.
[7]
For selected examples, see: a) L. Hie, N. F. F. Nathel, T. K. Shah, E. L.
Baker, X. Hong, Y. F. Yang, P. Liu, K. N. Houk, N. K. Garg, Nature
2015, 524, 79; b) G. Meng, M. Szostak, Org. Lett. 2015, 17, 4364; c) G.
Meng, M. Szostak, Angew. Chem. Int. Ed. 2015, 54, 14518; d) S. Shi,
G. Meng, M. Szostak, Angew. Chem. 2016, 128, 7073; e) G. Meng, S.
Shi, M. Szostak, ACS Catal. 2016, 6, 7335; f) N. A. Weires, E. L. Baker,
N. K. Garg, Nat. Chem. 2016, 8, 75; g) C. Liu, G. Li, S. Shi, G. Meng, R.
Lalancette, R. Szostak, M. Szostak, ACS Catal. 2018, 8, 9131, and
references cited therein.
[8]
[9]
For a leading review on Grignard reagents, see: C. E. I. Knappke, A.
Jacobi von Wangelin, Chem. Soc. Rev. 2011, 40, 4948.
[13] For reviews, see: a) D. S. Ziegler, B. Wei, P. Knochel, Chem. Eur. J.
2019, 25, 2695; b) R. L. Y. Bao, R. Zhao, L. Shi, Chem. Commun. 2015,
51, 6884; c) N. M. Barl, V. Werner, C. Sämann, P. Knochel,
Heterocycles 2014, 88, 827; d) T. Klatt, J. T. Markiewicz, C. Sämann, P.
Knochel, J. Org. Chem. 2014, 79, 4253; e) H. Ila, O. Baron, A. J.
Wagner, P. Knochel, Chem. Commun. 2006, 583; f) P. Knochel, W.
Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis,
V. A. Vu, Angew. Chem. Int. Ed. 2003, 22, 4302.
For selected examples of transition-metal-free N–C activation of amides,
see: a) G. Li, M. Szostak, Nat. Commun. 2018, 9, 4165; b) G. Li, C. L.
Ji, X. Hong, M. Szostak, J. Am. Chem. Soc. 2019, 141, 11161; c) Y. Liu,
S. Shi, M. Achtenhagen, R. Liu, M. Szostak, Org. Lett. 2017, 19, 1614;
d) G. Li, P. Lei, M. Szostak, Org. Lett. 2018, 20, 5622.
[10] For studies on amide bond ground-state destabilization pertinent to N–
C activation, see: a) V. Pace, W. Holzer, G. Meng, S. Shi, R. Lalancette,
R. Szostak, M. Szostak, Chem. Eur. J. 2016, 22, 1449; b) R. Szostak, S.
Shi, G. Meng, R. Lalancette, M. Szostak, J. Org. Chem. 2016, 81,
8091; c) J. Liebman, A. Greenberg, Biophys. Chem. 1974, 1, 222; d) K.
B. Wiberg, Acc. Chem. Res. 1999, 32, 922; e) It is worthwhile to note
that the Grignard addition to N-activated lactams proceeds with high
selectivity for ketones due to the formation of stable cyclic hemiaminals.
For a representative example, see: M. C. Hewitt, Y. Leblanc, V. S.
Gehling, R. G. Vaswani, A. Côté, C. G. Nasveschuk, A. M. Taylor, J. C.
Harmange, J. E. Audia, E. Pardo, R. Cummings, S. Joshi, P. Sandy, J.
A. Mertz, R. J. Sims, III, L. Bergeron, B. M. Bryant, S. Bellon, F. Poy, H.
Jayaram, Y. Tang, B. K. Albrecht, Bioorg. Med. Chem. Lett. 2015, 25,
1842; f) Interestingly, in the present case high selectivity can be
achieved at -20 °C, while esters require much lower temperatures. For
a representative example, see: A. S. K. Hashmi, T. L. Ruppert, T.
Knöfel, J. W. Bats, J. Org. Chem. 1997, 62, 7295.
[14] For selected applications, see: a) S. Yamada, A. Gavryushin, P.
Knochel, Angew. Chem. Int. Ed. 2010, 49, 2215; b) P. Anbarasan, H.
Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 2219; c) P.
Anbarasan, H. Neumann, M. Beller, Chem. Eur. J. 2010, 16, 4725; d) P.
Anbarasan, H. Neumann, M. Beller, Chem. Eur. J. 2011, 17, 4217; e) T.
Leermann, F. R. Leroux, F. Colobert, Org. Lett. 2011, 13, 4479.
[15] For leading monographs on organomagnesium reagents, see: a) P.
Knochel, Handbook of Functionalized Organometallics, Wiley-VCH,
2005; b) Z. Rappoport, I. Marek, The Chemistry of Organomagnesium
Compounds, John Wiley & Sons, 2008.
[16] Note that amidic resonance of N,N-Boc2 amides (RE = 6.3 kcal/mol) is
significantly reduced as compared with planar amides (e.g. DMAC, RE
= 18.3 kcal/mol).[11]
[17] A. D. Benischke, M. Ellwart, M. R. Becker, P. Knochel, Synthesis 2016,
48, 1101.
[18] L. Hu, J. D. Jiang, J. Qu, Y. Li, J. Jin, Z. R. Li, D. W. Boykin, Bioorg.
Med. Chem. Lett. 2007, 17, 3613.
[11] G. Meng, S. Shi, R. Lalancette, R. Szostak, M. Szostak, J. Am. Chem.
Soc. 2018, 140, 727.
[12] For seminal studies, see: a) A. Krasovskiy, P. Knochel, Angew. Chem.
Int. Ed. 2004, 43, 3333; b) A. Krasovskiy, B. F. Straub, P. Knochel,
This article is protected by copyright. All rights reserved.