Jens-Wolfgang Pissarek et al.
COMMUNICATIONS
References
[1] P. Horrillo Martinez, K. C. Hultzsch, F. Hampel, Chem.
Commun. 2006, 2221.
[2] a) M. C. Wood, D. C. Leitch, C. S. Yeung, J. A. Kozak,
L. L. Schafer, Angew. Chem. 2007, 119, 358; Angew.
Chem. Int. Ed. 2007, 46, 354; b) L. T. Kaspar, B. Finger-
hut, L. Ackermann, Angew. Chem. 2005, 117, 6126;
Angew. Chem. Int. Ed. 2005, 44, 5972; c) A. Heutling,
F. Pohlki, I. Bytschkov, S. Doye, Angew. Chem. 2005,
117, 3011; Angew. Chem. Int. Ed. 2005, 44, 2951;
d) D. A. Watson, M. Chiu, R. G. Bergman, Organome-
tallics 2006, 25, 4731; e) C. Mueller, W. Saak, S. Doye,
Eur. J. Org. Chem. 2008, 16, 2731.
[3] a) V. P. Conticello, L. Brard, M. A. Giardello, Y. Tsuji,
M. Sabat, C. L. Stern, T. J. Marks, J. Am. Chem. Soc.
1992, 114, 2761; b) D. Stern, M. Sabat, T. J. Marks, J.
Am. Chem. Soc. 1990, 112, 9558; c) C. M. Haar, C. L.
Stern, T. J. Marks, Organometallics 1996, 15, 1765;
d) P. W. Roesky, U. Deninger, C. L. Stern, T. J. Marks,
Organometallics 1997, 16, 4486.
[4] a) M. R. Gagne, T. J. Marks, J. Am. Chem. Soc. 1989,
111, 4108; b) M. R. Gagne, C. L. Stern, T. J. Marks, J.
Am. Chem. Soc. 1992, 114, 275; c) Y. Li, T. J. Marks, J.
Am. Chem. Soc. 1996, 118, 9295; d) P. W. Roesky, C. L.
Stern, T. J. Marks, Organometallics 1997, 16, 4705; e) Y.
Li, T. J. Marks, J. Am. Chem. Soc. 1998, 120, 1757;
f) V. M. Arredondo, F. E. McDonald, T. J. Marks, J.
Am. Chem. Soc. 1998, 120, 4871; g) V. M. Arredondo,
F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999,
121, 3633; h) S. Hong, T. J. Marks, J. Am. Chem. Soc.
2002, 124, 7886; i) J. S. Ryu, G. Y. Li, T. J. Marks, J.
Am. Chem. Soc. 2003, 125, 12584; j) S. Hong, S. Tian,
M. V. Metz, T. J. Marks, J. Am. Chem. Soc. 2003, 125,
14768; k) D. Riegert, J. Collin, A. Medour, E. Schulz,
A. Trifonov, J. Org. Chem. 2006, 71, 2514–2517.
Scheme 3. Hydroamination of a secondary aminoalkyne and
subsequent hydrolysis.
DCM upon the addition of silica. After stirring over
night and filtration the corresponding keto amine 7
was isolated as yellowish oil in 90% yield.
In conclusion, we report a highly efficient catalyst
for the hydroamination of aminoolefins and aminoal-
kynes. All parts of the catalytic system are commer-
cially available and, due to the fact that expensive li-
gands are not needed, our system is not costly. The re-
activity of the catalyst strongly depends on the coordi-
nation capability of the anion of the employed activa-
tor. The reactivity may be increased even further by
less coordinating WCAs. To the best of our knowl-
edge ZnEt2/ACHTUNGTRENNUNG[PhNHMe2][BACHTUNGTRENN(UNG C6F5)4] displays the high-
est reactivity of all Zn system for the hydroamination
of aminoolefins so far.
Experimental Section
[5] a) M. R. Bꢁrgstein, H. Berberich, P. W. Roesky, Orga-
nometallics 1998, 17, 1452; b) M. R. Bꢁrgstein, H. Ber-
berich, P. W. Roesky, Chem. Eur. J. 2001, 7, 3078; c) A.
Zulys, T. K. Panda, M. T. Gamer, P. W. Roesky, Chem.
Commun. 2004, 2584; d) A. Zulys, T. K. Panda, M. T.
Gamer, P. W. Roesky, Organometallics 2005, 24, 2197;
e) M. Rastꢀtter, A. Zulys, P. W. Roesky, Chem.
Commun. 2006, 874; f) M. Rastꢀtter, A. Zulys, P. W.
Roesky, Chem. Eur. J. 2007, 13, 3606.
[6] a) Y. K. Kim, T. Livinghouse, J. E. Bercaw, Tetrahedron
Lett. 2001, 42, 2933; b) Y. K. Kim, T. Livinghouse,
Angew. Chem. 2002, 114, 3797; Angew. Chem. Int. Ed.
2002, 41, 3645; c) Y. K. Kim, T. Livinghouse, Y. Horino,
J. Am. Chem. Soc. 2003, 125, 9560; d) P. N. OꢃShaugh-
nessy, P. D. Knight, C. Morton, K. M. Gillespie, P.
Scott, Chem. Commun. 2003, 1770; e) D. V. Gribkov,
K. C. Hultzsch, F. Hampel, Chem. Eur. J. 2003, 9, 4796;
f) K. C. Hultzsch, D. V. Gribkov, Chem. Commun.
2004, 730; g) K. C. Hultzsch, F. Hampel, T. Wagner, Or-
ganometallics 2004, 23, 2601; h) D. V. Gribkov, K. C.
Hultzsch, F. Hampel, J. Am. Chem. Soc. 2006, 128,
3748.
General Procedure for the Zinc-Catalyzed
Hydroamination
To a solution of substrate (0.43 mmol) in 0.5 mL C6D6 were
added 11 mL of a 1M solution of ZnEt2 in hexane (11 mmol,
2.5 mol%) and 9 mg of [PhNMe2H][BACHTUNGRTNEUNG(C6F5)4] (11 mmol,
2.5 mol%) under a nitrogen atmosphere. A dried NMR tube
was charged with the resulting solution and flame sealed
under vacuum. The reaction progress was monitored by
1H NMR for the stated time. When the reaction was judged
to be completed or did not show any further progress the
crude reaction mixture was filtered over a small pad of
silica, which was rinsed with MTBE. After removal of the
solvent and volatiles, the product was obtained in good
purity.
Acknowledgements
Part of this work was supported by Deutsche Forschungsge-
meinschaft (DFG). D.S. acknowledge support from the Clus-
ter of Excellence “Unifying Concepts in Catalysis” coordinat-
ed by the Technische Universitaet Berlin and funded by
DFG.
[7] Rh: a) M. Utsunomiya, R. Kuwano, M. Kawatsura, J. F.
Hartwig, J. Am. Chem. Soc. 2003, 125, 5608; b) A.
Takemiya, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128,
6042; Ir: c) R. Dorta, P. Egli, F. Zꢁrchner, A. Togni, J.
2084
ꢂ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2009, 351, 2081 – 2085