and (TSPP)Rh–D (which was rapidly deprotonated to form
(TSPP)RhI), the product ketones were extracted by CDCl3. A
parallel sample of (TSPP)Rh–CH2CH(OH)R dissolved in H2O
was also heated under the same reaction conditions, and extracted
by CDCl3. Both 1H NMR and GC-MS were used to characterize
the product ketones.
Department of Energy, Division of Chemical Sciences, Office of
Science DE-FG02–09ER16000.
Notes and references
1 K. F. McDaniel, in Comprehensive Organometallic Chemistry II, ed.
E. W. Abel, F. G. A. Stone and G. Wilkinson, Elsevier Science Ltd.,
Oxford, UK, 1995, vol. 12, ch. 7.
2 L. S. Hegedus, Palladium in Organic Synthesis, in Organometallics in
Synthesis: a Manual, ed. M. Schlosser, Wiley-Interscience, Chichester,
UK, 2nd edn, 1998.
Kinetic simulation for reaction of (TSPP)RhIII with pentene
K
[(TSPP)RhIII (D2O)2 ]3− (1)
[(TSPP)RhIII (OD)(D2O)]4− (2) + D+
1
ꢀꢀꢀꢁ
ꢂꢀꢀꢀ
3 A. R. Chianese, S. J. Lee and M. R. Gagne´, Angew. Chem., Int. Ed.,
(9)
2007, 46, 4042–4059.
4 C. Hahn, Chem.–Eur. J., 2004, 10, 5888–5899.
K
[(TSPP)RhIII (OD)(D2O)]4− (2)
[(TSPP)RhIII (OD)2 ]5− (3) + D+
2
ꢀꢀꢀꢁ
ꢂꢀꢀꢀ
5 (a) B. de Bruin, P. H. M. Budzelaar and A. W. Gal, Angew. Chem.,
Int. Ed., 2004, 43, 4142–4157; (b) R. S. Pryadun and J. D. Atwood,
Organometallics, 2007, 26, 4830–4834; D. S. Helfer and J. D. Atwood,
Organometallics, 2004, 23, 2412–2420.
6 (a) S. S. Stahl, Science, 2005, 309, 1824; (b) M. M. Konnick and S. S.
Stahl, J. Am. Chem. Soc., 2008, 130, 5753–5762; (c) B. A. Steinhoff and
S. S. Stahl, J. Am. Chem. Soc., 2006, 128, 4348–4355; (d) J. L. Brice,
J. E. Harang, V. I. Timokhin, N. R. Anastasi and S. S. Stahl, J. Am.
Chem. Soc., 2005, 127, 2868–2869.
7 (a) M. Utsunomiya and J. F. Hartwig, J. Am. Chem. Soc., 2004, 126,
2702–2703; (b) J. Takaya and J. F. Hartwig, J. Am. Chem. Soc., 2005,
127, 5756–5757.
8 R. Pryadun, D. Sukumaran, R. Bogadi and J. D. Atwood, J. Am. Chem.
Soc., 2004, 126, 12414–12420.
(10)
K
3
[(TSPP)Rh−OD(D2O)]4− + CH2 = CHCH2CH2CH3
[(TSPP)Rh−CH2CH(OD)(CH2 )2CH3(D2O)]4− (4)
ꢀꢀꢀꢁ
ꢂꢀꢀꢀ
(11)
We then have:
d[4]/dt = k3[2]c0 - k-3[4]
[1] = [2][D+]/K1,
[3] = [2]K2/[D+],
9 M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem., Int. Ed.,
2004, 43, 3368–3398.
10 C. Liu, C. F. Bender, X. Han and R. A. Widenhoefer, Chem. Commun.,
2007, 3607–3618.
11 E. M. Beccalli, G. Broggini, M. Martinelli and S. Sottocornola, Chem.
Rev., 2007, 107, 5318–5365.
12 T. Punniyamurthy, S. Velusamy and J. Iqbal, Chem. Rev., 2005, 105,
2329–2363.
T
[1] + [2] + [3] + [4] = c(Rh
)
=
c0 = [CH2 CHCH2CH2CH3]
13 (a) S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400–3420; (b) V. I.
Timokhin, N. R. Anastasi and S. S. Stahl, J. Am. Chem. Soc., 2003,
125, 12996–12997.
14 T. E. Mu¨ller and M. Beller, Chem. Rev., 1998, 98, 675–703.
15 (a) G.-J. ten Brink, I. W. C. E. Arends, G. Papadogianakis and R. A.
Sheldon, Chem. Commun., 1998, 2359–2360; (b) G.-J. ten Brink, 2288;
I. W. C. E. Arends, G. Papadogianakis and R. A. Sheldon, Appl. Catal.
A, 2000, 194–195, 435–442.
The concentration of 2 is related to 4,
−[4]
c
T
(Rh
)
[2]=
[D+ ]
K 2
+1+
K 1
[D+ ]
16 (a) B. de Bruin and D. G. H. Hetterscheid, Eur. J. Inorg. Chem., 2007,
211–230; (b) D. G. H. Hetterscheid, M. Bens and B. de Bruin, Dalton
Trans., 2005, 979–984; (c) D. G. H. Hetterscheid, J. M. M. Smits and
B. de Bruin, Organometallics, 2004, 23, 4236–4246; (d) B. de Bruin,
M. J. Boerakker, J. A. W. Verhagen, R. de Gelder, J. M. M. Smits and
A. W. Gal, Chem.–Eur. J., 2000, 6, 298–312; (e) B. de Bruin, J. A. W.
Verhagen, C. H. J. Schouten, A. W. Gal, D. Feichtinger and D. A.
Plattner, Chem.–Eur. J., 2001, 7, 416–422.
As stated above:
d[4]/dt = k3[2]c0 - k-3[4]
= b - a[4]
where
17 (a) M. Beller, C. Breindl, M. Eichberger, C. G. Hartung, J. Seayad,
O. R. Thiel, A. Tillack and H. Trauthwein, Synlett, 2002, 1579–1594;
(b) K. D. Hesp and M. Stradiotto, Org. Lett., 2009, 11, 1449–1452.
18 Z. Liu and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 1570–
1571.
k 3c
c0
)
T
b
(Rh
b =
, a =
+ k−3
[D+ ]
K 2
[D+ ]
c
T
(Rh
)
+1+
K 1
19 (a) M. S. Sanford and J. T. Groves, Angew. Chem., Int. Ed., 2004, 43,
588–590; (b) Y. Z. Han, M. S. Sanford, M. D. England and J. T. Groves,
Chem. Commun., 2006, 549–551.
20 X. Fu and B. B. Wayland, J. Am. Chem. Soc., 2004, 126, 2623–2631;
X. Fu, L. Basickes and B. B. Wayland, Chem. Commun., 2003, 520–521.
21 X. Fu, S. Li and B. B. Wayland, J. Am. Chem. Soc., 2006, 128, 8947–
8954.
so
[4]t = (b/a)[1 - exp(-at)]
b = (8.5 0.1) ¥ 10-7, a = (5.5 0.1) ¥ 10-4 are obtained from
simulation, and k3 = (2.3 0.1) ¥ 10-1 L mol-1 s-1, k-3 = (10.0
22 J. Zhang, S. Li, X. Fu and B. B. Wayland, Dalton Trans., 2009, 3661–
1.0) ¥ 10-5 s-1, and K3 = (2.3 0.1) ¥ 103 are derived when c(Rh
=
T
)
3663.
1.9 ¥ 10-3 M and c0 = [CH2 CHCH2CH2CH3] = 2.1 ¥ 10-3 M are
=
23 M. H. Abraham and J. Le, J. Pharm. Sci., 1999, 88, 868–880.
24 S. Li, S. Sarkar and B. B. Wayland, Inorg. Chem., 2009, 48, 8550–8558.
25 B. B. Wayland, S. L. VanVoorhees and K. J. Del Rossi, J. Am. Chem.
Soc., 1987, 109, 6513–6515.
26 (a) J. P. Collman, A. S. Chien, T. A. Eberspacher and J. I. Brauman,
J. Am. Chem. Soc., 1998, 120, 425–426; (b) I. H. Grate and G. N.
Schrauzer, J. Am. Chem. Soc., 1979, 101, 4601–4611; (c) G. N.
Schrauzer and I. H. Grate, J. Am. Chem. Soc., 1981, 103, 541–546;
used.
Acknowledgements
This work was supported by a starter grant from Peking Uni-
versity, NSFC (grants 20841002 and 20801002), and the U.S.
482 | Dalton Trans., 2010, 39, 477–483
This journal is
The Royal Society of Chemistry 2010
©