exploited since it suffered from several limitations. First, the
catalyst loading was usually high. Second, specific substrates
such as naphthyl, activated phenyl, and styryl carboxylates
were required to obtain satisfactory results.5 Unactivated
aromatic carboxylate reacted poorly, while vinylic carboxy-
late has not even been reported to undergo successful reaction
by nickel catalysis.5,6 Thus, we set out to address these issues
to make this chemistry more practical. In our continuing
efforts in C-O bond activation, we report here the nickel-
catalyzed Suzuki-Miyaura coupling of both unactivated
alkenyl and phenyl carbamates.7 The use of carbamate as a
protecting group provided further synthetic opportunity due
to its well-known ability in directed ortho metalation (DoM)
pioneered by Snieckus.8
We initially chose the unactivated alkenyl carboxylate as
the substrate, which was readily available and synthetically
useful.1-CyclohexenylacetatewasfirstappliedtoSuzuki-Miyaura
coupling. Unfortunately, the desired C-C formation com-
pletely failed, with most of the cyclohexanone recovered.
Other carboxylates were tested but failed. To our surprise, a
change of the protecting group to carbamate resulted in a
remarkable improvement of efficiency.8b,c N,N-Dimethyl
cyclohexenyl carbamate 1a engaged in the coupling reaction
Scheme 1. Cross-Coupling of Unactivated Vinyl Carbamate
in a good yield. Further systematic studies indicated that the
coupling between carbamate 1a and phenyl boroxine 2a ran
very smoothly in the presence of Ni(PCy3)2Cl2 (5.0 mol %)
and PCy3 (10.0 mol %) as a catalyst, K2CO3 (2.0 equiv) as
a base, and an adequate amount of water as an additive. The
arylated product 3a was isolated in 85% yield (Scheme 1).
This is the first successful example to construct such an
arylated olefin from unactivated alkenyl carbamates.
Table 1. Cross-Coupling between 1 and Phenyl Boroxinesa
(3) (a) Bohm, V. P. W.; Weskamp, T.; Gstottmayr, C. W. K.; Herrmann,
W. A. Angew. Chem., Int. Ed. 2000, 39, 1602. (b) Herrmann, W. A.; Elison,
M.; Fischer, J.; Kocher, C. G.; Artus, R. J. Angew. Chem., Int. Ed. 1995,
34, 2371. (c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
1998, 120, 9722. (d) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999,
121, 1473. (e) Fu¨rstner, A.; Leitner, A.; Me´ndez, M.; Krause, H. J. Am.
Chem. Soc. 2002, 124, 13856. (f) Littke, A. F.; Fu, G. C. Angew. Chem.,
Int. Ed. 2002, 41, 4176. (g) Nguyen, H. N.; Huang, X.; Buchwald, S. L.
J. Am. Chem. Soc. 2003, 125, 11818. (h) Tang, Z.-Y.; Hu, Q.-S. J. Am.
Chem. Soc. 2004, 126, 3058. (i) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew.
Chem., Int. Ed. 2008, 47, 8059. (j) Zhang, L.; Wu, J. J. Am. Chem. Soc.
2008, 130, 12250. (k) Ackermann, L.; Althammer, A.; Born, R. Angew.
Chem., Int. Ed. 2006, 45, 2619. (l) Brennfu¨hrer, A.; Neumann, H.; Beller,
M. Angew. Chem., Int. Ed. 2009, 48, 4114. (m) Marion, N.; Nolan, S. P.
Acc. Chem. Res. 2008, 41, 1440.
(4) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem.
Soc. 1979, 101, 2246. (b) Dankwardt, J. W. Angew. Chem., Int. Ed. 2004,
43, 2428. (c) Guan, B.; Xiang, S.; Wu, T.; Wang, B.; Zhao, K.; Shi, Z.
Chem. Commun. 2008, 1437. (d) Ueno, S.; Chatani, N.; Kakiuchi, F. J. Am.
Chem. Soc. 2007, 129, 6098. (e) Blakey, S. B.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2003, 125, 6046. (f) Kakiuchi, F.; Usui, M.; Ueno, S.; Chatani,
N.; Murai, S. J. Am. Chem. Soc. 2004, 126, 2706. (g) Ueno, S.; Mizushima,
E.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2006, 128, 16516. (h)
Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47,
4866. (i) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.;
Wang, Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (j) Gonza´lez-Bobes, F.;
Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360. (k) Netherton, M. R.; Fu,
G. C. Angew. Chem., Int. Ed. 2002, 41, 3910.
a All the reactions were carried out on the scale of 0.25 mmol of 1,
0.30 mmol of 2a, 0.0125 mmol of Ni(PCy3)2Cl2, 0.025 mmol of PCy3, 0.50
mmol of K2CO3, and 0.25 mmol of H2O in 5 mL of dioxane at 110 °C for
16 h. b E:Z ) 5:1.
(5) Guan, B.-T.; Wang, Y.; Li, B.-J.; Yu, D.-G.; Shi, Z.-J. J. Am. Chem.
Soc. 2008, 130, 14468. (b) Quasdorf, K. W.; Tian, X.; Garg, N. K. J. Am.
Chem. Soc. 2008, 130, 14422. For a highlight and a computational study,
see: (c) Goossen, L. J.; Goossen, K.; Stanciu, C. Angew. Chem., Int. Ed.
2009, 48, 3569. (d) Li, Z.; Zhang, S.-L.; Fu, Y.; Guo, Q.-X.; Liu, L. J. Am.
Chem. Soc. 2009, 131, 8815. For Negishi and Kumada couplings, see: (e)
Li, B.-J.; Li, Y.-Z.; Lu, X.-Y.; Liu, J.; Guan, B.-T.; Shi, Z.-J. Angew. Chem.,
Int. Ed. 2008, 47, 10124. (f) Li, B.-J.; Xu, L.; Wu, Z.-H.; Guan, B.-T.;
Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2009, 131, 14656.
(6) (a) Sun, C.-L.; Wang, Y.; Zhou, X.; Wu, Z.-H.; Li, B.-J.; Guan,
B.-T.; Shi, Z.-J. Chem. Eur. J. 2009,accepted. DOI: chem.200902785. For
rhodium-catalyzed reactions of several vinyl acetates, see: (b) Yu, J.-Y.;
Kuwano, R. Angew. Chem., Int. Ed. 2009, 48, 7217.
To explore the substrate scope, we investigated different
alkenyl carbamates. Obviously, starting from activated R,ꢀ-
unsaturated cyclic ketone 1b, the desired cross-coupling
product was afforded in an excellent yield. Both linear and
cyclic R,ꢀ-unsaturated esters 1c and 1d were also suitable
substrates, and the desired arylated products 3c and 3d were
isolated in good to excellent yields (Table 1). Both 1-stilbenyl
carbamate 1e and 1-styryl carbamate 1f were further submit-
ted, and the corresponding cross-coupling also occurred
smoothly. It is important to note that, unlike vinyl acetates,
both carbamates located at the 1- or 2-position of the styrene
(7) During the preparation of this manuscript, contributions from the
groups of Garg and Snieckus appeared: (a) Quasdorf, K. W.; Riener, M.;
Petrova, K. V.; Garg, N. K. J. Am. Chem. Soc. 2009, 131, 17748. (b) Antoft-
Finch, A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc. 2009, 131, 17750.
(8) (a) Snieckus, V. Chem. ReV. 1990, 90, 879. (b) Sengupta, S.; Leite,
M.; Raslan, D. S.; Quesnelle, C.; Snieckus, V. J. Org. Chem. 1992, 57,
4066. (c) Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009,
131, 9590.
Org. Lett., Vol. 12, No. 4, 2010
885