pubs.acs.org/joc
termed oximes. The obtained oximes are in equilibrium with
Nucleophilic Catalysis of Carbohydrate
Oxime Formation by Anilines
closed-ring N-glycosyloxyamines.2-4 Carbohydrate oxime
chemistry has been applied to, e.g., neo-glycopeptides,5
solution-phase tagging,6 microarrays,3,7,8 nanoparticles,4,9
and solid supports10,11 and generally displays high chemo-
selectivity and high yields; however, reaction rates are signi-
ficantly decreased in certain cases, especially for carbo-
hydrate electrophiles containing a 2-acetamido group (e.g.,
GlcNAc).11 Rate enhancements of oxime formation involving
exclusively open-chain reactants and products may be
obtained by nucleophilic catalysis, as reported initially by
Cordes and Jencks12 and recently revitalized by Dawson and
co-workers,13 for benzaldehyde and N-glyoxal electrophiles,
respectively. However, reactions of reducing glycans 1
and aniline under aqueous conditions are known to yield
N-phenylglycosylamines 4 (Keq∼1 at pH 4-5),14 indicating
that catalytic efficiency could be rather different from oxime
formation with strictly open-chain aldehydes (Scheme 1).
Specifically, the application of reducing glycans as electro-
philes in catalytic oxime formation includes additional equi-
libria due to (i) the dynamic masking of the reactive aldehydo
tautomer 2 as the cyclic pyranose (and furanose) hemiacetals
1 (>99.9%) and hydrate form (omitted in Scheme 1 for
clarity) and (ii) the trapping of iminium ions 3 as
(protonated) glycosyl amines 4, both of which involve po-
tentially rate-limiting intermediates.12,15 The high reactivity
of the imine intermediates is thought to be largely a result of
the ease of protonation of these species relative to the
carbonyl species, where subsequent elimination of aniline is
fast.12,16
Mikkel B. Thygesen,†, Henrik Munch,†, Jørgen Sauer,†,‡
Emiliano Clo, Malene R. Jørgensen, Ole Hindsgaul,
and Knud J. Jensen*,†,‡
§
§
ꢀ †
†IGM -Bioorganic Chemistry, Faculty of Life Sciences,
University of Copenhagen, Thorvaldsensvej 40, DK-1871
Frederiksberg, Denmark, ‡Centre for Carbohydrate
Recognition and Signalling, and §Carlsberg Laboratory,
Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark.
These authors contributed equally to this work.
Received November 12, 2009
Chemoselective formation of glycoconjugates from un-
protected glycans is needed to further develop chemical
biology involving glycans. Carbohydrate oxime forma-
tion is often slow, and organocatalysis by anilines would
be highly promising. Here, we present that carbohydrate
oxime formation can be catalyzed with up to 20-fold
increases in overall reaction rate at 100 mM aniline.
Application of this methodology provided access to
complex glycoconjugates.
(4) Thygesen, M. B.; Sauer, J.; Jensen, K. J. Chem.;Eur. J. 2009, 15,
1649–1660.
(5) Cervigni, S. E.; Dumy, P.; Mutter, M. Angew. Chem., Int. Ed. 1996, 35,
1230–1232. Zhao, Y. M.; Kent, S. B. H.; Chait, B. T. Proc. Natl. Acad. Sci.
U.S.A. 1997, 94, 1629–1633. Spetzler, J. C.; Høeg-Jensen, T. J. Peptide Sci.
1999, 5, 582–592. Vila-Perello, M.; Gallego, R. G.; Andreu, D. ChemBio-
Chem 2005, 6, 1831–1838. Jimenez-Castells, C.; de la Torre, B. G.; Andreu,
D.; Gutierrez-Gallego, R. Glycoconjugate J. 2008, 25, 879–887.
(6) Pauly, M.; York, W. S.; Guillen, R.; Albersheim, P.; Darvill, A. G.
Carbohydr. Res. 1996, 282, 1–12. Ramsay, S. L.; Freeman, C.; Grace, P. B.;
Redmond, J. W.; MacLeod, J. K. Carbohydr. Res. 2001, 333, 59–71. Namavari,
M.; Cheng, Z.; Zhang, R.; De, A.; Levi, J.; Hoerner, J. K.; Yaghoubi, S. S.;
Syud, F. A.; Gambhir, S. S. Bioconjugate Chem. 2009, 20, 432–436.
(7) Lee, M.-r.; Shin, I. Org. Lett. 2005, 7, 4269–4272. Zhi, Z. L.; Laurent,
N.; Powell, A. K.; Karamanska, R.; Fais, M.; Voglmeir, J.; Wright, A.;
Blackburn, J. M.; Crocker, P. R.; Russell, D. A.; Flitsch, S.; Field, R. A.;
Turnbull, J. E. ChemBioChem 2008, 9, 1568–1575.
An important basis for the functional study of carbohy-
drate interactions and (automated) analysis of carbohydrate
mixtures is the access to well-defined glycoconjugates, in
solution or bound to solid phases.1 Preferably, these glyco-
conjugates should be constructed in highly chemoselective
reactions and in high yields. One methodology entails cova-
lent coupling of reducing glycans with aminooxy nucleo-
philes to form carbohydrate oxime O-ethers, commonly
ꢀ
(8) Clo, E.; Blixt, O.; Jensen, K. J. Eur. J. Org. Chem. 2010, 540–554.
(9) Thygesen, M. B.; Sørensen, K. K.; Clo, E.; Jensen, K. J. Chem.
ꢀ
Commun. 2009, 6367–6369.
(10) Guillaumie, F.; Thomas, O. R. T.; Jensen, K. J. Bioconjugate Chem.
2002, 13, 285–294. Nishimura, S. I.; Niikura, K.; Kurogochi, M.; Matsushita,
T.; Fumoto, M.;Hinou, H.;Kamitani, R.; Nakagawa, H.; Deguchi, K.; Miura,
N.; Monde, K.; Kondo, H. Angew. Chem., Int. Ed. 2005, 44, 91–96.
(11) Lohse, A.; Martins, R.; Jørgensen, M. R.; Hindsgaul, O. Angew.
Chem., Int. Ed. 2006, 45, 4167–4172. Lohse, A.; Martins, R.; Jorgensen,
M. R.; Hindsgaul, O. International Patent Application WO2006/084461A1,
PCT/DK2006/000066.
(1) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357–2364. Ratner,
D. M.; Adams, E. W.; Disney, M. D.; Seeberger, P. H. ChemBioChem 2004,
5, 1375–1383. Larsen, K.; Thygesen, M. B.; Guillaumie, F.; Willats, W. G. T.;
Jensen, K. J. Carbohydr. Res. 2006, 341, 1209–1234. Park, S.; Lee, M. R.;
Shin, I. Chem. Soc. Rev. 2008, 37, 1579–1591.
(12) Cordes, E. H.; Jencks, W. P. J. Am. Chem. Soc. 1962, 84, 826–831.
(13) Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem., Int. Ed.
2006, 45, 7581–7584.
(2) Finch, P.; Merchant, Z. J. Chem. Soc., Perkin Trans. 1 1975, 1682–
1686.
(14) Bridiau, N.; Benmansour, M.; Legoy, M. D.; Maugard, T. Tetra-
hedron 2007, 63, 4178–4183.
(3) Liu, Y.; Feizi, T.; Campanero-Rhodes, M. A.; Childs, R. A.; Zhang,
Y.; Mulloy, B.; Evans, P. G.; Osborn, H. M. I.; Otto, D.; Crocker, P. R.;
Chai, W. Chem. Biol. 2007, 14, 847–859.
(15) Haas, J. W.; Kadunce, R. E. J. Am. Chem. Soc. 1962, 84, 4910–4913.
(16) Jencks, W. P. In Catalysis in Chemistry and Enzymology, 1st ed.;
McGraw-Hill: New York, 1969; pp 72-74.
1752 J. Org. Chem. 2010, 75, 1752–1755
Published on Web 02/04/2010
DOI: 10.1021/jo902425v
r
2010 American Chemical Society