10.1002/adsc.201900307
Advanced Synthesis & Catalysis
equivalents in Rh(III)-catalysis, we successfully
utilized arylalkynyl silane as a surrogate. Control
experiments suggest that in situ generated Rh-species,
which is likely to be Lewis acid, plays a vital role in
the desilylation step. The methodology offers a broad
substrate scope furnishing products in moderate to
good yields. The Cp*M-catalyzed distal C-H
functionalization of arylacetamide derivatives are less
common, and the present result is one of the limited
successful examples.
[3] Q. Bu, T. Rogge, V. Kotek, L. Ackermann, Angew.
Chem. 2018, 130, 773; Angew. Chem. Int. Ed. 2018, 57,
765.
[4] R. Das, G. S. Kumar, M. Kapur, Eur. J. Org. Chem.
2017, 5439.
[5] a) M. Wasa, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130,
14058; b) X.-C. Wang, Y. Hu, S. Bonacorsi, Y. Hong,
R. Burrell, J.-Q. Yu, J. Am. Chem. Soc. 2013, 135,
10326; c) G. Li, L. Wan, G. Zhang, D. Leow, J.
Spangler, J.-Q. Yu, J. Am. Chem. Soc. 2015, 137, 4391;
d) M.-Z. Lu, X.-R. Chen, H. Xu, H.-X. Dai, J.-Q. Yu,
Chem. Sci. 2018, 9, 1311.
[6] a) A. Deb, S. Bag, R. Kancherla, D. Maiti, J. Am. Chem.
Soc. 2014, 136, 13602; b) Y. Jaiswal, Y. Kumar, A.
Kumar, J. Org. Chem. 2018, 83, 1223; c) C. Shao, G.
Shi, Y. Zhang, Eur. J. Org. Chem. 2016, 5529; d) J.
Park, M. Kim, S. Sharma, E. Park, A. Kim, S. H. Lee, J.
H. Kwak, Y. H. Jung, I. S. Kim, Chem. Commun. 2013,
49, 1654; e) C. S. Yeung, X. Zhao, N. Borduas, V. M.
Dong, Chem. Sci. 2010, 1, 331.
[7] a) B. Sun, T. Yoshino, M. Kanai, S. Matsunaga, Angew.
Chem. 2015, 127, 13160; Angew. Chem. Int. Ed. 2015,
54, 12968; b) S. P. Midya, M. K. Sahoo, V. Landge, P.
R. Rajamohanan, E. Balaraman, Nat. Commun. 2015, 6,
8591; c) L. Grigorjeva, O. Daugulis, Angew. Chem.
2014, 126, 10373; Angew. Chem. Int. Ed. 2014, 53,
10209; d) K. Gao, P. S. Lee, T. Fujita, N. Yoshikai, J.
Am. Chem. Soc. 2010, 132, 12249.
Experimental Section
Procedure for ortho alkenylation of
arylacetamide derivatives
In a 8-mL screw-cap reaction vial, aryl acetamide
derivatives
(0.4
mmol),
1-phenyl-2-
trimethylsilylacetylene derivatives (0.2 mmol),
rhodium catalyst [RhCp*Cl2]2 (6.2 mg, 5 mol%),
PivOH (20.4 mg, 1 equiv), AgSbF6 (13.7 mg, 20
mol%) in DCE (2 mL) were taken. The vial was sealed
with a screw cap and placed in a pre-heated metal
block at 100 °C and the reaction mixture was stirred at
the same temperature for 12 h. After completion of the
reaction (monitored by TLC), the reaction mixture was
cooled to room temperature and concentrated under
vacuum. The crude products were purified on a silica
gel column using EtOAc/ petroleum ether mixture or
EtOAc/DCM mixture.
[8] a) M. Sen, N. Rajesh, B. Emayavaramban, B.
Sundararaju, Chem. Eur. J. 2018, 24, 342; b) S. S.
Bera, S. Debbarma, A. K. Ghosh, S. Chand, M. S.Maji,
J. Org. Chem. 2017, 82, 420; c) W. Ma, K. Graczyk, L.
Ackermann, Org. Lett. 2012, 14, 6318.
Acknowledgements
[9] a) K. Shibata, S. Natsui, N. Chatani, Org. Lett. 2017,
19, 2234; b) R. Tanaka, H. Ikemoto, M. Kanai, T.
Yoshino, S. Matsunaga, Org. Lett. 2016, 18, 5732.
[10] a) S. Wang, J.-T. Hou, M.-L. Feng, X.-Z. Zhang, S.-Y.
Chen, X.-Q. Yu, Chem. Commun. 2016, 52, 2709; b) B.
Sun, T. Yoshino, M. Kanai, S. Matsunaga, Angew.
Chem. 2015, 127, 13160; Angew. Chem. Int. Ed. 2015,
54, 12968; c) H. Ikemoto, T. Yoshino, K. Sakata, S.
Matsunaga, M. Kanai, J. Am. Chem. Soc. 2014, 136,
5424; d) M. Sen, B. Emayavaramban, N. Barsu, J. R.
Premkumar, B. Sundararaju, ACS Catal. 2016, 6,
2792; e) S. Zhou, J. Wang, L. Wang, K. Chen, C. Song,
J. Zhu, Org. Lett. 2016, 18, 3806; f) R. Tanaka, H.
Ikemoto, M. Kanai, T. Yoshino, S. Matsunaga, Org.
Lett. 2016, 18, 5732; g) J. A. Boerth, J. A. Ellman,
Angew. Chem. 2017, 129, 10108; Angew. Chem. Int. Ed.
2017, 56, 9976.
[11] J. Jia, J. Shi, J. Zhou, X. Liu, Y. Song, H. E. Xu, W.
Yi, Chem. Commun. 2015, 51, 2925.
[12] a) N. Muniraj, K. R. Prabhu, J. Org. Chem. 2017, 82,
6913; b) N. Muniraj, K. R. Prabhu, ACS Omega 2017,
2, 4470; c) N. Muniraj, K. R. Prabhu, Org. Lett. 2019,
21, 1068.
[13] a) P. Zhao, F. Wang, K. Han, X. Li, Org. Lett. 2012,
14, 5506; b) Y. Hashimoto, K. Hirano, T. Satoh, F.
Kakiuchi, M. Miura, Org. Lett. 2012, 14, 2058; c) C.-Q.
Wang, C. Feng, T.-P. Loh, Asian J. Org. Chem. 2016, 5,
1002; d) N. Muniraj, K. R. Prabhu, Adv. Synth. Catal.
This work was supported by SERB (EMR/2016/006358),
New-Delhi, CSIR (No. 02(0226)15/EMR-II), New-Delhi, Indian
Institute of Science and R. L. Fine Chem. We thank Dr. A. R.
Ramesha (R. L. Fine Chem) for useful discussion. A. K. and N. M.
thanks UGC, New-Delhi for a fellowship..
References
[1] a) C. Sambiagio, D. Schꢀnbauer, R. Blieck, T. Dao-
Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F.
Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M.
Schnꢁrch, Chem. Soc. Rev. 2018, 47, 6603; b) S. D.
Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv.
Synth. Catal. 2014, 356, 1461; c) J. R. Hummel, J. A.
Boerth, J. A. Ellman, Chem. Rev. 2017, 117, 9163; d) T.
Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; f) J.
Wencel-Delord, F. Glorius, Nat. Chem. 2013, 5, 369.
[2] a) J. G. Samaritoni, L. Arndt, T. Bruce, J. E. Dripps, J.
Gifford, C. J. Hatton, W. H. Hendrix, J. R. Schoonover,
G. W. Johnson, V. B. Hegde, S. Thornburgh, J. Agric.
Food Chem. 1997, 45, 1920; b) P. K. Yonan, R. L.
Novotney, C. M. Woo, K. A. Prodan, F. M. Hershenson,
J. Med. Chem. 1980, 23, 1102; c) W. R. Hudgins, S.
Shack, C. E. Myers, D. Samid, Biochem. Pharmacol.
1995, 50, 1273; d) A. Y. Kocama, B. Guven,
Cytotechnology, 2016, 68, 947.
5
This article is protected by copyright. All rights reserved.