Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
ChemComm
dynamic kinetic resolution process. We found that the alcohol (9) (a) R. M. Bullock, Catalysis without Precious Metals, Wiley-VCH
DOI: 10.1039/D0CC02881A
dehydrogenation and imine hydrogenation reactions happen in Verlag GmbH & Co. KGaA, Weinheim, 2010; (b) B. Plietker, Iron
stepwise fashion, while the hydride transfer to the imine Catalysis in Organic Chemistry: Reactions and applications, Wiley-
intermediate represents the rate and stereodetermining step of VCH, Weinheim, 2008.
the whole reaction. Given the operational simplicity, the (10) M. Xiao, X. Yue, R. Xu, W. Tang, D. Xue, C. Li, M. Lei, J. Xiao and
presented catalytic system will serve as a basis for further C. Wang, Angew. Chem. Int. Ed., 2019, 58, 10528-10536.
application in the synthesis of relevant optically pure α-chiral (11) (a) G. C. Liu, D. A. Cogan and J. A. Ellman, J. Am. Chem. Soc., 1997,
amines and heterocycles.
119, 9913-9914; (b) M. T. Robak, M. A. Herbage and J. A. Ellman,
Chem. Rev., 2010, 110, 3600-3740; (c) M. Wakayama and J. A. Ellman,
J. Org. Chem., 2009, 74, 2646-2650.
Conflicts of interest
There are no conflicts to declare.
(12) Recent reviews: (a) T. Irrgang and R. Kempe, Chem. Rev., 2019,
119, 2524-2549; (b) A. Mukherjee and D. Milstein, ACS Catal., 2018,
8, 11435-11469; (c) F. Kallmeier and R. Kempe, Angew. Chem., Int.
Ed., 2018, 57, 46-60; (d) N. Gorgas and K. Kirchner, Acc. Chem. Res.,
2018, 51, 1558-1569; (e) G. A. Filonenko, R. van Putten, E. J. M.
Hensen and E. Pidko, Chem. Soc. Rev., 2018, 47, 1459-1483; (f) M.
Garbe, K. Junge and M. Beller, Eur. J. Org. Chem., 2017, 4344-4362.
(13) Mn-catalysed achiral N-alkylation with primary alcohols to
produce achiral products: (a) S. Elangovan, J. Neumann, J.-B. Sortais,
K. Junge, C. Darcel and M. Beller, Nat. Commun., 2016, 7, 12641; (b)
J. Neumann, S. Elangovan, A. Spannenberg, K. Junge and M. Beller,
Chem. Eur. J., 2017, 23, 5410-5413; (c) A. Bruneau-Voisine, D. Wang,
V. Dorcet, T. Roisnel, C. Darcel and J.-B. Sortais, J. Catal., 2017, 347,
57-62; (d) M. Mastalir, E. Pittenauer, G. Allmaier and K. Kirchner, J.
Am. Chem. Soc., 2017, 139, 8812-8815; (e) R. Fertig, T. Irrgang, F.
Freitag, J. Zander and R. Kempe, ACS Catal., 2018, 8, 8525-8530; (f)
K. Das, A. Mondal, D. Pal, H. K. Srivastava and D. Srimani,
Organometallics, 2019, 38, 1815-1825; (g) B. G. Reed-Berendt and L.
C. Morrill, J. Org. Chem., 2019, 84, 3715-3724.
(14) G. Tsuji, T. Takeda, I. Furusawa, O. Horino and Y. Kubo, Pestic.
Biochem. Physiol., 1997, 57, 211-219.
(15) C. M. Spencer and S. Noble, Drugs Aging, 1998, 13, 391-411.
(16) R. Webster, A. Boyer, M. J. Fleming and M. Lautens, Org. Lett.,
2010, 12, 5418-5421.
(17) D. J. Kucera and R. W. Scott, U.S. Pat. Appl. Publ. 20040204591.
(18) (a) P. A. Dub, N. J. Henson, R. L. Martin and J. C. Gordon, J. Am.
Chem. Soc., 2014, 136, 3505-3521. (b) H.-J. Pan, Y. Zhang C. Shan, Z.
Yu, Y. Lan and Y. Zhao, Angew. Chem., Int. Ed., 2016, 55, 9615-9619.
(19) A. Adamkiewicz and J. Mlynarski, Eur. J. Org. Chem., 2016, 1060-
1065
Acknowledgements
L.M.A thank Universidad de Las Palmas de Gran Canaria
(ULPGC) for support. Gratitude is also due to the KAUST for
using the supercomputer Shaheen II for providing the
computational resources.
Notes and references
(1) (a) C. Aranda, G. Oksdath-Mansilla, F. R. Bisogno and G. de
Gonzalo, Adv Synth Catal, 2020, 362, 1233-1257; (b) D. Ghislieri and
N. J. Turner, Topics in Catalysis, 2014, 57, 284-300; (c) C. E.
Humphrey, M. Ahmed, A. Ghanem, N. J. Turner, in: Separation of
Enantiomers: Synthetic Methods, (Ed.: M. Todd), Wiley-VCH,
Weinheim, 2014, pp 123–160; (d) M. D. Truppo, N. J. Turner and J. D.
Rozzell, Chem.Comm., 2009, 2127-2129; (e) T. C. Nugent, Chiral
Amine Synthesis, Wiley-VCH, Weinheim, 2010; (f) M. Rueping, E.
Sugiono, C. Azap, T. Theissmann and M. Bolte, Org. Lett., 2005, 7,
3781-3783.
(2) (a) A. Corma, J. Navas and M. J. Sabater, Chem. Rev., 2018, 118,
1410-1459; for the production of chiral products using biocatalysis:
(b) E. Tassano and M. Hall, Chem. Soc. Rev. 2019, 48, 5596-5615.
(3) (a) Y. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan and Y. Zhao, Angew.
Chem., Int. Ed., 2014, 53, 1399-1403; (b) Z.-Q. Rong, Y. Zhang, R. H.
B. Chua, H.-J. Pan and Y. Zhao, J. Am. Chem. Soc., 2015, 137, 4944-
4947; (c) C. S. Lim, T. T. Quach and Y. Zhao, Angew. Chem., Int. Ed.,
2017, 56, 7176-7180.
(4) (a) A. E. Putra, Y. Oe and T. Ohta, Eur. J. Org. Chem., 2013, 6146-
6151; (b) L.-C. Yang, Y.-N. Wang, Y. Zhang and Y. Zhao, ACS Catal.,
2017, 7, 93-97.
(5) M. Peña-López, H. Neumann and M. Beller, Angew. Chem., Int.
Ed., 2016, 55, 7826-7830.
(6) P. Yang, C. Zhang, Y. Ma, C. Zhang, A. Li, B. Tang and J. S. Zhou,
Angew. Chem., Int. Ed., 2017, 56, 14702-14706.
(7) N. J. Oldenhuis, V. M. Dong and Z. Guan, J. Am. Chem. Soc., 2014,
136, 12548-12551.
(8) (a) F. G. Mutti, T. Knaus, N. S. Scrutton, M. Breuer and N. J. Turner,
Science, 2015, 349, 1525-1529; (b) S. L. Montgomery, J. Mangas-
Sanchez, M. P. Thompson, G. A. Aleku, B. Dominguez and N. J. Turner,
Angew. Chem. Int. Ed. 2017, 56, 10491-10494; (c) M. P. Thompson
and N. J. Turner, ChemCatChem 2017, 9, 3833-3836; (d) W. Böhmer,
T. Knaus and F. G. Mutti, ChemCatChem 2018, 10, 731-735; (e) M. L.
Corrado, T. Knaus and F. G. Mutti, Green Chem. 2019, 21, 6246-6251.
4 | Chem. Commun., 2020, XX, 1-4
This journal is © The Royal Society of Chemistry 2020
Please do not adjust margins