Communication
ChemComm
Notes and references
1 (a) T. R. Belliotti, W. A. Brink, S. R. Kesten, J. R. Rubin, D. J. Wustrow,
K. T. Zoski, S. Z. Whetzel, A. E. Corbin, T. A. Pugsley, T. G. Heffner
and L. D. Wise, Bioorg. Med. Chem. Lett., 1998, 8, 1499; (b) T. L. Stuk,
B. K. Assink, R. C. Bates, D. T. Erdman, V. Fedij, S. M. Jennings,
J. A. Lassig, R. J. Smith and T. L. Smith, Org. Process Res. Dev., 2003,
7, 851; (c) A. Mertens, H. Zilch, B. Koing, W. Schafer, T. Poll,
W. Kampe, H. Seidel, U. Leser and H. Leinert, J. Med. Chem., 1993,
36, 2526; (d) A. Couture, E. Deniau, P. Grandclaudon and C. Hoarau,
Tetrahedron, 2000, 56, 1491; (e) J. N. Oak, J. Oldenhof and
H. H. M. Van Tol, Eur. J. Pharmacol., 2000, 405, 303; ( f ) K. Speck
and T. Magauer, Beilstein J. Org. Chem., 2003, 9, 2048;
(g) N. Kanamitsu, T. Osaki, Y. Itsuji, M. Yoshimura, H. Tsujimoto
and M. Soga, Chem. Pharm. Bull., 2007, 55, 1682; (h) J. J. Baldwin,
S. Cacatian, D. A. Claremon, L. W. Dillard, P. T. Flaherty,
A. V. Ishchenko, L. Jia, G. Mcgeehan, R. D. Simpson, S. B. Singh,
C. M. Tice, Z. Xu, J. Yuan, W. Zhao and L. Zhuang, Renin Inhibitors
WO2008156816A2, 2008.
Fig. 3 Optimized geometries of the transition states.
2 (a) V. Bisai, A. Suneja and V. K. Singh, Angew. Chem., 2014,
126, 10913; (b) J. Suc, I. Dokli and M. Gredicak, Chem. Commun.,
2016, 52, 2071; (c) R. Grigg, M. J. R. Dorrity, J. F. Malone,
T. Mongkolaussavaratana, W. D. J. A. Norbert and V. Sridharan,
Tetrahedron Lett., 1990, 31, 3075; (d) S. Adachi, M. Onozuka,
Y. Yoshida, M. Ide, Y. Saikawa and M. Nakata, Org. Lett., 2014,
16, 358; (e) M.-D. Chen, X. Zhou, M.-Z. He, Y.-P. Ruan and
P.-Q. Huang, Tetrahedron, 2004, 60, 1651; ( f ) D. L. Comins,
S. Schiling and Y. Zhang, Org. Lett., 2005, 7, 95; (g) A. Suneja,
V. Bisai and V. K. Singh, J. Org. Chem., 2016, 81, 4779–4788;
(h) S. K. Ray, M. M. Sadhu, R. G. Biswas, R. A. Unhale and
V. K. Singh, Org. Lett., 2019, 21, 417; (i) Y. Yoshinaga, T. Yamamoto
and M. Suginome, Angew. Chem., Int. Ed., 2020, 59, 7251;
( j) H. Mcalona, J. P. Murphy, M. Nieuwenhuyzen, K. Reynolds,
P. K. S. Sarma, P. J. Stevenson and N. Thompson, J. Chem. Soc.,
Perkin Trans. 1, 2002, 69.
studies, Pd(II)-amino acid salt was usually set to the relative zero
value. As shown in Fig. 2, four different transition states (TS1-S,
TS1-R, TS2-S, TS2-R of Fig. 3) were simulated from int3 to int4.
The lowest activation energy of the C(sp2)–H bond activation was
calculated to be 15.2 kcal molꢀ1 (TS1-S), while the C(sp3)–H bond
activation was calculated to be 18.4 kcal molꢀ1 (TS2-S), that is
3.2 kcal molꢀ1 higher than TS1-S, which was in agreement with
the experimental results of Scheme 3. In the transition state TS1-S
and TS1-R of C(sp2)–H bond activation, the higher energy state for
the R-enantiomer (TS1-R) was calculated to be 15.7 kcal molꢀ1
,
which is 0.5 kcal molꢀ1 higher than TS1-S. The energy difference
between TS1-S and TS1-R indicated that the S-configuration of
chiral isoindolinone 2a was formed preferentially.
3 X. F. Bai, Q.-C. Mu, Z. Xu, K.-F. Yang, L. Li, Z.-J. Zheng, C.-G. Xia and
L.-W. Xu, ACS Catal., 2019, 9, 1431.
4 (a) L. Coric, S. Muller and B. List, J. Am. Chem. Soc., 2010, 132, 17370;
(b) K.-J. Xiao, L. Chu and J.-Q. Yu, Angew. Chem., Int. Ed., 2016,
55, 2856; (c) J. Seliger, X. Dong and M. Oestreich, Angew. Chem., Int.
Ed., 2019, 58, 1970; (d) L. Deng, Y. Fu, S. Y. Lee, C. Wang, P. Liu and
G. Dong, J. Am. Chem. Soc., 2019, 141, 16260; (e) W. Li, H. Yang, R. Li,
H. Lv and X. Zhang, ACS Catal., 2020, 10, 2603; ( f ) S. Rajkumar, S. He
and X. Yang, Angew. Chem., Int. Ed., 2019, 58, 10315; (g) H. Yang and
W.-H. Zheng, Angew. Chem., Int. Ed., 2019, 58, 16177; (h) K.-J. Xiao,
L. Chu, G. Chen and J.-Q. Yu, J. Am. Chem. Soc., 2016, 138, 7796;
(i) S. Lu, S. B. Poh, W.-Y. Siau and Y. Zhao, Angew. Chem., 2013,
52, 1731.
5 (a) A. Di Moa, M. Tiffner, F. Scorzelli, L. Palombi, R. Filosa, P. De
Caprariis, M. Waser and A. Massa, Beilstein J. Org. Chem., 2015,
11, 2591; (b) C. Liu, Q. Zhang, H. Li, S. Guo, B. Xiao, W. Deng,
L. Liu and W. He, Chem. – Eur. J., 2016, 22, 6208.
6 (a) D. E. Hill, K. L. Bay, Y.-F. Yang, R. E. Plata, R. Takise, K. N. Houk
and J.-Q. Yu, J. Am. Chem. Soc., 2017, 139, 18500; (b) B. E. Haines,
J.-Q. Yu and D. G. Musaev, ACS Catal., 2017, 7, 4344; (c) G.-J. Cheng,
P. Chen, T.-Y. Sun, X.-H. Zhang, J.-Q. Yu and Y.-D. Wu, Chem. – Eur. J.,
2015, 21, 11180.
In conclusion, Pd/Cu-cocatalyzed enantioselective C–H activa-
tion/amine carbonylation of sterically hindered benzylamines by
kinetic resolution has been developed first, which will fill an
important gap in the synthesis of bioactive compounds containing
an isoindolinone motif. Elucidated by density functional theory
(DFT) calculations, the origin of the chemoselectivity and stereo-
selectivity could have implications for other kinetic resolution
reactions. The further development of the synthetic strategy is
ongoing in our laboratory.
We thank the National Natural Science Foundation of China
(NSFC 21702211, 21773051, 21703051, and 21801056), the
Natural Science Foundation of Jiangsu Province (BK20170421),
and Zhejiang Provincial Natural Science Foundation of China
(LZ18B020001).
7 (a) H. Han, T. Zhang, S.-D. Yang, Y. Lan and J.-B. Xia, Org. Lett., 2019,
21, 1749; (b) H. Han, S. D. Yang and J. B. Xia, J. Org. Chem., 2019,
84, 3357; (c) S. W. Yuan, H. Han, Y. L. Li, X. L. Wu, X. G. Bao, Z. Y. Gu
and J. B. Xia, Angew. Chem., Int. Ed., 2019, 58, 8887.
Conflicts of interest
There are no conflicts to declare.
This journal is The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 1778ꢀ1781 | 1781