Communication
ChemComm
be useful in nucleic acid detection, such as COVID-19 epidemic
diagnostics, control and prevention by enhancing the sensitivity
and accuracy of nucleic acid detection.
This work was supported by the National Natural Science
Foundation of China (21761132029 and 22077089), SeNA
Research Institute, and the Fundamental Research Funds for
the Central Universities.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 J.-W. Ai, H.-C. Zhang, T. Xu, J. Wu, M. Zhu, Y.-Q. Yu, H.-Y. Zhang,
Z. Shen, Y. Li, X. Zhou, G.-Q. Zang, J. Xu, W.-J. Chen, Y.-J. Li,
D.-S. Xie, M.-Z. Zhou, J.-Y. Sun, J.-Z. Chen and W.-H. Zhang,
medRxiv, 2020, DOI: 10.1101/2020.02.13.20022673.
2 L. M. Kucirka, S. A. Lauer, O. Laeyendecker, D. Boon and J. Lessler,
Ann. Intern. Med., 2020, 173(4), 262–267.
3 S. Ren, Q. Wang, P. Yang, S. Cui, T. Yuan, D. Zhang, L. Long and
Y. Pan, Clin. Chem., 2020, 66, 794–801.
4 S. Woloshin, N. Patel and A. S. Kesselheim, N. Engl. J. Med., 2020,
383(6), e38.
5 J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737–738.
6 M. Sosson, D. Pfeffer and C. Richert, Nucleic Acids Res., 2019, 47,
3836–3845.
7 J. Niu, R. Hili and D. R. Liu, Nat. Chem., 2013, 5, 282–292.
8 A. M. Sismour and S. A. Benner, Nucleic Acids Res., 2005, 33,
5640–5646.
9 R. Laos, C. Lampropoulos and S. A. Benner, Acta Crystallogr., Sect. C:
Struct. Chem., 2019, 75, 22–28.
10 G. Storz, Science, 2002, 296, 1260–1263.
11 Y. Zhang, J. L. Ptacin, E. C. Fischer, H. R. Aerni, C. E. Caffaro,
K. S. Jose, A. W. Feldman, C. R. Turner and F. E. Romesberg,
Nature, 2017, 551, 644–647.
12 Y. Gao, Y. Cui, T. Fox, S. Lin, H. Wang, N. de Val, Z. H. Zhou and
W. Yang, Science, 2019, 363(6429), eaav7003.
13 S. Becker, J. Feldmann, S. Wiedemann, H. Okamura, C. Schneider,
K. Iwan, A. Crisp, M. Rossa, T. Amatov and T. Carell, Science, 2019,
366, 76–82.
Fig. 5 The selenium strategy for COVID-19 detection via RT-qPCR com-
mercial kits and melting study. (a) Inhibition of viral background RNA
(human total RNA) for RT-qPCR detection with supplementary SeTTP. In
the presence of the background RNA (0.025, 0.25, and 2.5 ng mLꢀ1), group
i–iii (blue), group a–c (green) and group 1–3 curves (red) were collected
with supplementary ddH2O, TTP and SeTTP (0.25 mM), respectively.
(b) Detection sensitivity enhancement with supplementary SeTTP. In the
presence of viral RNA (5, 25, 50, 100, 200 and 5000 copies), group i–vi
(blue), group a–f (green) and group 1–6 curves (red) were collected with
supplementary ddH2O, TTP and SeTTP (0.25 mM), respectively. (c) Viral
detection of COVID-19 clinical samples with supplementary ddH2O, TTP
and SeTTP, respectively. DCt equals Ct value minus its negative control Ct;
DCt o 1 is defined as negative detection result. (d–f) In the presence of
human total RNA (0.25 ng mLꢀ1), the RT-qPCR melting curves of COVID-19
viral RNA (10, 50, 250 and 1000 copies) with supplementary ddH2O 14 G. Ferry, Nature, 2019, 575, 35–36.
(d), TTP (e) and SeTTP (f), respectively.
15 A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris and D. R. Liu,
Nature, 2016, 533, 420–424.
16 Z. Lan and J. A. Doudna, Science, 2002, 295, 2084–2088.
17 C. Roost, S. R. Lynch, P. J. Batista, K. Qu, H. Y. Chang and E. T. Kool,
J. Am. Chem. Soc., 2015, 137(5), 2107–2115.
In summary, we have first synthesized 2-seleno-thymidine
triphosphate (SeTTP) and SeT-DNAs via DNA polymerization. We 18 C. Schneider, S. Becker, H. Okamura, A. Crisp, T. Amatov,
M. Stadlmeier and T. Carell, Angew. Chem., Int. Ed., 2018, 57,
5943–5946.
19 O. Kennard, J. Biomol. Struct. Dyn., 1985, 3, 205.
have found that DNA polymerase can effectively recognize the
Se-triphosphate, almost as well as the canonical one. Furthermore,
we have discovered high discrimination of the 2-Se-thymine against 20 J. R. Kiefer, C. Mao, J. C. Braman and L. S. Beese, Nature, 1998, 391,
304–307.
T/G mis-pairing and polymerization, and the SAM triphosphate is
over 10 000 fold more discriminative than the canonical one.
21 L. E. Orgel, J. Mol. Biol., 1968, 38, 381–393.
22 H. Sun, S. Jiang, J. Caton-Williams, H. Liu and Z. Huang, RNA, 2013,
Furthermore, we have demonstrated this unique SAM strategy for
DNA polymerization, amplification and nucleic acid detection
(such as PCR and RT-PCR) with high specificity, sensitivity and
product purity. In addition, SAM provides a novel approach for
investigating base-pair recognition, molecular interaction and
nucleic acid polymerization, such as DNA replication, RNA tran-
scription and reverse transcription. Moreover, this SAM strategy can
19, 1309–1314.
23 A. E. Hassan, J. Sheng, W. Zhang and Z. Huang, J. Am. Chem. Soc.,
2010, 132, 2120–2121.
24 J. Caton-Williams, M. Smith, N. Carrasco and Z. Huang, Org. Lett.,
2011, 13, 4156–4159.
25 B. Hu, Y. Wang, S. Sun, W. Yan, C. Zhang, D. Luo, H. Deng, L. R. Hu
and Z. Huang, Angew. Chem., Int. Ed., 2019, 58, 7835–7839.
26 T. B. Morrison, J. J. Weis and C. T. Wittwer, Biotechniques, 1998, 24,
954–962.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 5434–5437 | 5437