chiral ligands containing a 1-oxy-1,1-bisphosphorus unit B
have rarely been reported.7 We herein describe the synthesis
of a series of structurally unique and operationally convenient
chiral 2-phosphino-2,3-dihydrobenzo[d][1,3]oxaphosphole
ligands 3a-d (POPs) which contain the unique substructural
unit (B) and their excellent applications in rhodium-catalyzed
asymmetric hydrogenation of R-(acylamino)acrylates and
ꢀ-(acylamino)acrylates.
We have recently reported a series of efficient BIBOP
ligands for asymmetric hydrogenation during which we
developed the scalable syntheses of chiral 3-tert-butyl-2,3-
dihydrobenzo[d][1,3]oxaphosphole intermediates (1a-b,
Scheme 1).8 This allowed us to synthesize an array of chiral
phosphine then treatment with H2O2 provided diphosphine
oxides 2a-d in 66-95% yield. No diastereomeric products
were observed during these reactions, indicating a stereospe-
cific phosphinylation at the 2 position. Reduction of 2a-d
with HSiCl3/iPr2EtN9 as the reagents in xylene provided the
desired diphosphorus ligands 3a-d in satisfactory yields.
No racemization or epimerization was observed during the
reductions. Ligand 3a (MeO-POP) was reoxidized to the
diphosphine oxide 2a with H2O2,10 showing >99% enantio-
meric purity by chiral HPLC.11 The stability of ligand 3a as
a white crystalline solid was also tested by exposure to air
at rt. No detectable oxidation was observed by 31P NMR
analysis after four hours and only ∼5% oxidation side-
product was detected after one week. The good stability of
3a in air offers great operational convenience for handling.
The rhodium complexes Rh[(3a-d)(nbd)]BF4 were also
prepared from ligands 3a-d by reacting with Rh[(nbd)2]BF4.
The absolute configuration and the relative stereochemistry
of ligands 3a-d between the chiral phosphorus center and
the adjacent chiral carbon center were unambiguously
confirmed from the X-ray structure of Rh[(ent-3a)(nbd)]BF4
(Figure 2).12 Study of the X-ray structure revealed that the
Scheme 1. Ligand Synthesis
2-phosphino-2,3-dihydrobenzo[d][1,3]oxaphosphole ligands
3a-d (POPs) in only two steps from 1a-b. Thus, depro-
tonation of 1a or 1b with LDA followed by phosphinylation
with di(tert-butyl)chlorophosphine or dicyclohexylchloro-
(2) For recent representative examples, see: (a) Imamoto, T.; Watanabe,
J.; Wada, Y.; Masuda, H.; Yamada, H.; Tsuruta, H.; Matsukawa, S.;
Yamaguchi, K. J. Am. Chem. Soc. 1998, 120, 1635. (b) Jiang, Q.; Jiang,
Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem., Int. Ed. 1998, 37, 1100.
(c) van den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de
Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000,
122, 11539. (d) Reetz, M. T.; Mehler, G. Angew. Chem., Int. Ed. 2000, 39,
3889. (e) Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425. (f)
Komarov, I. V.; Bo¨rner, A. Angew. Chem., Int. Ed 2001, 40, 1197. (g)
Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612. (h) Ostermeier,
M.; Priess, J.; Helmchen, G. Angew. Chem., Int. Ed. 2002, 41, 612. (i) Hu,
A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew.
Chem., Int. Ed. 2002, 41, 2348. (j) Tang, W.; Wang, W.; Zhang, X. Angew.
Chem., Int. Ed. 2003, 42, 943. (k) Tang, W.; Wang, W.; Chi, Y.; Zhang,
X. Angew. Chem., Int. Ed. 2003, 42, 3509. (l) Wu, S.; Zhang, W.; Zhang,
Z.; Zhang, X. Org. Lett. 2004, 6, 3565. (n) Hu, X.-P.; Zheng, Z. Org. Lett.
2004, 6, 3585. (m) Imamoto, T.; Oohara, N.; Takahashi, H. Synthesis 2004,
1353. (nn) Liu, D.; Zhang, X. Eur. J. Org. Chem. 2005, 646. (o) Cheng,
X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int.
Ed. 2005, 44, 1118. (p) Imamoto, T.; Sugita, K.; Yoshida, K. J. Am. Chem.
Soc. 2005, 127, 11934. (q) Chen, W.; McCormack, P. J.; Mohammed, K.;
Mbafor, W.; Roberts, S. M.; Whittall, J. Angew. Chem., Int. Ed. 2007, 44,
4141. (r) Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida, K. Angew.
Chem., Int. Ed. 2007, 44, 8636.
Figure 2. X-ray structure of Rh[(ent-3a)(nbd)]BF4 [the H atoms
are omitted for clarity, selected bond lengths (Å) 2.281 (Rh-P(a)),
2.337 (Rh-P(b)); selected bond angle (deg) 73.7 (P(a)-Rh-P(b))]
rhodium atom has a stronger coordination bond with the
chiral phosphorus center (P(a)) than with the phosphorus
(6) Other than methylene group, a few chiral 1,1-bisphosphorus ligands
with carbocycle, oxygen, or nitrogen linkers were reported, see: (a) Marinetti,
A.; Le Menn, C.; Ricard, L. Organometallics 1995, 14, 4983. (b) Calabro`,
G.; Drommi, D.; Bruno, G.; Faraone, F. Dalton Trans. 2004, 81. (c) Payne,
N. C.; Stephan, D. W. J. Organomet. Chem. 1981, 221, 203.
(7) No bisphosphorus ligands containing a 1-oxy-1,1-bisphosphorus unit
B can be found on SciFinder. An unconfirmed nonchiral structure containing
1-amino-1,1-bisphosphorus unit was recently reported, see: Aluri, B. R.;
Kindermann, M. K.; Jones, P. G.; Dix, I.; Heinicke, J. Inorg. Chem. 2008,
47, 6900.
(3) (a) Jackson, M.; Lennon, I. C. Tetrahedron Lett. 2007, 48, 1831.
(b) Dai, Q.; Li, W.; Zhang, X. Tetrahedron 2008, 64, 6943.
(8) Tang, W.; Qu, B.; Capacci, A. G.; Rodriguez, S.; Wei, X.; Haddad,
N.; Narayanan, B.; Ma, S.; Grinberg, N.; Yee, N. K.; Krishnamurthy, D.;
Senanayake, C. H. Org. Lett. 2010, 12, 176.
(4) (a) Yamanio, Y.; Imamoto, T. J. Org. Chem. 1999, 64, 2988. (b)
Gridnev, I. D.; Yamanoi, Y.; Higashi, N.; Tsuruta, H.; Yasutake, M.;
Imamoto, T. AdV. Synth. Catal. 2001, 343, 118.
(9) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 2788.
(10) Oxidation of chiral phosphine with H2O2 is generally stereospecific
with retention at the P center, see ref 9 and Luckenbach, R. Tetrahedron
Lett. 1976, 24, 2017.
(5) (a) Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.;
Bao, J. J. Am. Chem. Soc. 2004, 126, 5966. (b) Wu, H.-P.; Hoge, G. Org.
Lett. 2004, 6, 3645. (c) Gridnev, I. D.; Imamato, T.; Hoge, G.; Kouchi, M.;
Takahashi, H. J. Am. Chem. Soc. 2008, 130, 2560.
(11) See Supporting Information for details.
Org. Lett., Vol. 12, No. 5, 2010
1105