Organic Letters
Letter
Transition to MTBE, often used to avoid difficulties with THF,
at 80 °C as well gave the same isomer ratio. However, activating
A (3 mol %), followed by cooling to 25−26 °C, followed by the
addition of 2,5-dichloropyridine (30) while stirring for 18 h gave
an improved 1:8 isomer ratio of borylated products with 86%
conversion (Table 5). We applied this methodology (Table 6)
AUTHOR INFORMATION
Corresponding Authors
■
Eric D. Slack − Johnson Matthey, West Deptford, New Jersey
Thomas J. Colacot − Johnson Matthey, West Deptford, New
Table 5. Selectivity Improvement of A for the Borylation of
2,5-Dichloropyridine24a
Complete contact information is available at:
Notes
The authors declare the following competing financial
interest(s): Johnson Matthey has a financial interest in
Compound A.
a
ACKNOWLEDGMENTS
Reaction conditions: Ir source, B2pin2, solvent, 1 h at temperature.
■
b
1
Then substrate was added. Determined by H NMR. From ref 27.
This paper is dedicated to the loving memory of Prof. Victor
Snieckus (1937−2020), for his pioneering work in the area of
C−H functionalization, with emphasis on directed ortho
metalation. We thank Dr. Peter Gildner (FMC Corporation,
Newark, Delaware) for the preliminary work at the Colacot
group. We also thank Dr. Maria Luisa Palacios-Alcolado for her
full support to finish this project successfully.
Table 6. Ortho Borylation Using Traceless Directing Phenols
Applying Catalyst A
a
REFERENCES
a
■
Reaction conditions: (1) A, HBpin, B2pin2, THF 75 °C, 1 h. (2)
b
(1) (a) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N.
R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390. (b) Ishiyama, T.;
Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem., Int. Ed. 2002, 41,
3056. (c) Ishiyama, T.; Nobuta, Y.; Hartwig, J. F.; Miyaura, N. Chem.
Commun. 2003, 23, 2924.
(2) (a) Cho, J.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M.
R., III Science 2002, 295, 305. (b) Chotana, G. A.; Vanchura, B. A.; Tse,
M. K.; Staples, R. J.; Maleczka, R. E., Jr.; Smith, M. R., III Chem.
Commun. 2009, 5731. (c) Maleczka, R. E.; Shi, F.; Holmes, D.; Smith,
M. R. J. Am. Chem. Soc. 2003, 125, 7792.
(3) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(4) Oeschger, R. J.; Larsen, M. A.; Bismuto, A.; Hartwig, J. F. J. Am.
Chem. Soc. 2019, 141, 16479.
ROBpin, 75 °C 16 h. Substrate added before induction/activation.
to more challenging substrates that offered access to unique
regioselectivity through traceless directing groups, disclosed by
Smith and Maleczka for the ortho-borylation of protected
phenols.26 A very recent work showing the applicability of this
strategy using nickel catalysis has also been disclosed.27 We
found parity in catalyst loading and yield from their original
work using [Ir(OMe)(COD)]2/dtbbpy, with our Phen ligand
based system offering a slight increase of yield for the para-
methoxy phenol (Table 6, 34a), suggesting the true merits of the
Phen system.
(5) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura,
N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
(6) Tamura, H.; Yamazaki, H.; Sato, H.; Sakaki, S. J. Am. Chem. Soc.
2003, 125, 16114.
(7) Coapes, R. B.; Souza, F. E. S.; Fox, M. A.; Batsanov, A. S.; Goeta, A.
E.; Yufit, D. S.; Leech, M. A.; Howard, J. A. K.; Scott, A. J.; Clegg, W.;
Marder, T. B. J. Chem. Soc., Dalt. Trans. 2001, 1201.
Summary. This study shows that the precise formation and
activation of iridium precatalysts of the type A are important for
the efficient borylation of aromatics and heteroaromatics for
practical applications. The performance of A based on our
studies in the context of sourcing high purity [Ir(OMe)-
(COD)]2 in bulk quantities for in situ borylation with relatively
expensive Me4Phen or dtbbpy shows that the current
technology can be a breakthrough in overcoming the process
challenges. Therefore, we hope that this study will prompt
others to look into the activity of the more stable iridium
chloride precatalysts with newer ligands as a platform to avoid
many of the pitfalls of the in situ formed catalyst systems, in
analogy with the Pd precatalysts.
(8) Schunemann, K.; Furkert, D. P.; Connelly, S.; Fraser, J. D.; Sperry,
̈
J.; Brimble, M. A. Synlett 2014, 25, 556.
(9) Fischer, D. F.; Sarpong, R. J. Am. Chem. Soc. 2010, 132, 5926.
(10) Hiroto, S.; Miyake, Y.; Shinokubo, H. Chem. Rev. 2017, 117,
2910.
(11) Yuan, C.; Liu, B. Org. Chem. Front. 2018, 5, 106.
(12) Sieser, J. E.; Maloney, M. T.; Chisowa, E.; Brenek, S. J.; Monfette,
S.; Salisbury, J. J.; Do, N. M.; Singer, R. A. Org. Process Res. Dev. 2018,
22, 527.
(13) Arrington, K.; Barcan, G. A.; Calandra, N. A.; Erickson, G. A.; Li,
L.; Liu, L.; Nilson, M. G.; Strambeanu, I. I.; VanGelder, K. F.; Woodard,
J. L.; Xie, S.; Allen, C. L.; Kowalski, J. A.; Leitch, D. C. J. Org. Chem.
2019, 84, 4680.
(14) Preshlock, S. M.; Ghaffari, B.; Maligres, P. E.; Krska, S. W.;
Maleczka, R. E., Jr.; Smith, M. R., III J. Am. Chem. Soc. 2013, 135, 7572.
(15) Larsen, M. A. Frontiers in Iridium-Catalyzed C-H Borylation:
Attaining Novel Reactivity and Selectivity. Ph.D. Dissertation,
University of California, Berkley, CA, 2016.
ASSOCIATED CONTENT
■
sı
* Supporting Information
The Supporting Information is available free of charge at
Experimental details and spectral data of all compounds
1564
Org. Lett. 2021, 23, 1561−1565