Journal of the American Chemical Society
Article
(16) Hyster, T. K.; Dalton, D. M.; Rovis, T. Chem. Sci. 2015, 6, 254.
(17) Wodrich, M. D.; Ye, B.; Gonthier, J. F.; Corminboeuf, C.;
Cramer, N. Chem. - Eur. J. 2014, 20, 15409.
(18) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292.
(19) Piou, T.; Rovis, T. Nature 2015, 527, 86.
(20) For selected examples, see: (a) Harper, K. C.; Sigman, M. S.
Science 2011, 333, 1875. (b) Harper, K. C.; Vilardi, S. C.; Sigman, M.
S. J. Am. Chem. Soc. 2013, 135, 2482. (c) Milo, A.; Bess, E. N.; Sigman,
M. S. Nature 2014, 507, 210. (d) Bess, E. N.; DeLuca, R. J.; Tindall, D.
J.; Oderinde, M. S.; Roizen, J. L.; Du Bois, J.; Sigman, M. S. J. Am.
Chem. Soc. 2014, 136, 5783. (e) Bess, E. N.; Bischoff, A. J.; Sigman, M.
S. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14698. (f) Milo, A.; Neel, A.
J.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737. (g) Bess, E. N.;
Guptill, D. M.; Davies, H. M. L.; Sigman, M. S. Chem. Sci. 2015, 6,
3057. (h) Hickey, D. P.; Schiedler, D. A.; Matanovic, I.; Doan, P. V.;
Atanassov, P.; Minteer, S. D.; Sigman, M. S. J. Am. Chem. Soc. 2015,
137, 16179. (i) Mougel, V.; Santiago, C. B.; Zhizhko, P. A.; Bess, E. N.;
ORCID
Author Contributions
⊥T.P. and F.R.-M. contributed equally to this work.
Author Contributions
#M.R.-M. and K.E.J. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank NIGMS (GM80442 to T.R.) for support, and
acknowledge the use of the EPSRC UK National Service for
Computational Chemistry Software (CHEM870 to R.S.P.) in
carrying out this work and the dirac cluster at the University of
Oxford (EP/L015722/1).
́
Varga, J.; Frater, G.; Sigman, M. S.; Coperet, C. J. Am. Chem. Soc.
2015, 137, 6699. (j) Neel, A. J.; Milo, A.; Sigman, M. S.; Toste, F. D. J.
Am. Chem. Soc. 2016, 138, 3863. For a recent review, see: (k) Sigman,
M. S.; Harper, K. C.; Bess, E. N.; Milo, A. Acc. Chem. Res. 2016, 49,
1292.
REFERENCES
■
(1) Wilkinson, G.; Gillard, R. D.; McCleverty, J. A. Comprehensive
Coordination Chemistry; Pergamon: New York, 1987; Vol. 2.
(2) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G.
Principles and Applications of Organotransition Metal Chemistry;
University Science Books: Mill Valley, CA, 1987; p 57.
(21) For pioneering work, see: (a) Yoshino, T.; Ikemoto, H.;
Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207. For
recent examples, see: (b) Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.;
Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2015, 54, 9944. (c) Li,
J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635. (d) Hummel,
J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490. (e) Yu, D.-G.;
Gensch, T.; de Azambuja, T.; Vasquez-Cespedes, S.; Glorius, F. J. Am.
Chem. Soc. 2014, 136, 17722.
(22) For a review, see: Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res.
2015, 48, 1040.
(23) Single crystals for complexes Rh13 and Rh16 of adequate
quality were not obtained.
(3) For recent reviews, see: (a) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624. (b) Satoh, T.; Miura, M. Chem. - Eur.
J. 2010, 16, 11212. (c) Patureau, F. W.; Glorius, F. Angew. Chem., Int.
Ed. 2011, 50, 1977. (d) Patureau, F. W.; Wencel-Delord, J.; Glorius, F.
Aldrichimica Acta 2012, 45, 31. (e) Song, G.; Wang, F.; Li, X. Chem.
Soc. Rev. 2012, 41, 3651. (f) Chiba, S. Chem. Lett. 2012, 41, 1554.
(4) (a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407.
(b) Umeda, N.; Tsurugo, H.; Satoh, T.; Miura, M. Angew. Chem., Int.
Ed. 2008, 47, 4019. (c) Fukutani, T.; Umeda, N.; Hirano, K.; Satoh,
T.; Miura, M. Chem. Commun. 2009, 5141. (d) Morimoto, K.; Hirano,
K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2068. (sd) Mochida, S.;
Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744.
(5) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K.
J. Am. Chem. Soc. 2008, 130, 16474.
(24) Tolman, C. A. Chem. Rev. 1977, 77, 313.
(25) (a) Shen, J.; Basolo, F.; Nombel, P.; Lugan, N.; Lavigne, G.
Inorg. Chem. 1996, 35, 755. (b) du Plooy, K. E.; du Toit, J.; Levendis,
D. C.; Coville, N. J. J. Organomet. Chem. 1996, 508, 231. (c) du Plooy,
K. E.; Ford, T. A.; Coville, N. J. J. Organomet. Chem. 1999, 579, 348.
(26) (a) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984, 106, 5908.
(b) Cheong, M.; Basolo, F. Organometallics 1988, 7, 2041.
(27) (a) Lyatifov, I. R.; Gulieva, G. I.; Babin, V. N.; Materikova, R. B.;
Petrovskii, P. V.; Fedin, E. I. J. Organomet. Chem. 1996, 15, 2469.
(b) Meir, E. J. M.; Kozminski, W.; Linden, A.; Lusenberger, P.; von
Philipsborn, W. Organometallics 1996, 15, 2469. (c) Fabrello, A.;
Dinoi, C.; Perrin, L.; Kalck, P.; Maron, L.; Urrutigoity, M.; Dechy-
Cabaret, O. Magn. Reson. Chem. 2010, 48, 848.
(28) (a) Mason, J. G.; Rosenblum, M. J. Am. Chem. Soc. 1960, 82,
4206. (b) Kuwana, R.; Bublitz, D. E.; Hoh, G. L. K. J. Am. Chem. Soc.
1960, 82, 5811. (c) Langmaier, J.; Samec, Z.; Varga, V.; Horacek, M.;
Mach, K. J. Organomet. Chem. 1999, 579, 348. (d) Langmaier, J.;
Samec, Z.; Varga, V.; Horacek, M.; Choukroun, R.; Mach, K. J.
Organomet. Chem. 1999, 326, 93.
(29) This DFT methodology has been previously applied to the
study of Rh-catalysis and metal−ligand dissociation to give quantitative
agreement with experimental results: (a) Sperger, T.; Sanhueza, I. A.;
Kalvet, I.; Schoenebeck, F. Chem. Rev. 2015, 115, 9532. (b) Straker, R.;
Peng, Q.; Mekareeya, A.; Paton, R. S.; Anderson, E. A. Nat. Commun.
2016, 7, 10109. (c) Peng, Q.; Paton, R. S. Acc. Chem. Res. 2016, 49,
1042. (d) Raju, R. K.; Bengali, A. A.; Brothers, E. N. Dalton Trans.
2016, 45, 13766.
(6) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565.
(7) (a) Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R. H.; Li, X. J. Org.
Chem. 2010, 75, 7487. (b) Rakshit, S.; Patureau, F. W.; Glorius, F. J.
Am. Chem. Soc. 2010, 132, 9585.
(8) For selected examples, see: (a) Uto, T.; Shimizu, M.; Ueura, K.;
Tsurugi, H.; Satoh, T.; Miura, M. J. Org. Chem. 2008, 73, 298.
(b) Rakshit, S.; Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010,
132, 9585. (c) Du, Y.; Hyster, T. K.; Rovis, T. Chem. Commun. 2011,
47, 12074. (d) Pham, M. V.; Ye, B.; Cramer, N. Angew. Chem., Int. Ed.
2012, 51, 197. (e) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2013, 135,
66. (f) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013,
135, 5364. (g) Liu, G.; Shen, Y.; Zhou, Z.; Lu, X. Angew. Chem., Int. Ed.
2013, 52, 6033. (h) Davis, T. A.; Wang, C.; Rovis, T. Synlett 2015, 26,
1520. (i) Archambeau, A.; Rovis, T. Angew. Chem., Int. Ed. 2015, 54,
13337.
(9) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 2735.
(10) Shibata, Y.; Tanaka, K. Angew. Chem. 2011, 50, 11109.
(11) Romanov-Michailidis, F.; Sedillo, K. S.; Neely, J. M.; Rovis, T. J.
Am. Chem. Soc. 2015, 137, 8892.
(12) (a) Hoshino, Y.; Shibata, Y.; Tanaka, K. Adv. Synth. Catal. 2014,
356, 1577. (c) Fukui, M.; Hoshino, Y.; Satoh, T.; Miura, M.; Tanaka,
K. Adv. Synth. Catal. 2014, 356, 1638.
(30) Santiago, C. B.; Milo, A.; Sigman, M. S. J. Am. Chem. Soc. 2016,
138, 13424.
(31) Winstein, S.; Holness, N. J. J. Am. Chem. Soc. 1955, 77, 5562.
(32) (a) Adams, R.; Yuan, H. C. Chem. Rev. 1933, 12, 261. (b) Bott,
G.; Field, L. D.; Sternhell, S. J. Am. Chem. Soc. 1980, 102, 5618.
(13) (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc.
2010, 132, 6908. (b) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am.
Chem. Soc. 2011, 133, 6449.
(14) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem.
Soc. 2011, 133, 2350.
(15) (a) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846.
(b) Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606.
(33) Niksch, T.; Gorls, H.; Weigand, W. Eur. J. Inorg. Chem. 2010,
2010, 95.
(34) Taft, R. W. J. Am. Chem. Soc. 1953, 75, 4538.
̈
N
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX