N. M. Islam et al. / Bioorg. Med. Chem. Lett. 20 (2010) 997–999
999
Table 1
HDAC inhibitory activity and p21 promoter activity data for bicyclic tetrapeptide hydroxamic acids and reference compounds
Compounds
Loop size
HPLC20 tR (min)
IC50 (nM)
HDAC4
p21 promoter assay, EC1000 (nM)
HDAC1
HDAC6
Tricostatin A
—
—
23
9.1
9.1
11
13
25
44
65
20
2
3
4
5
6
–(CH2)9–
4.74
6.03
7.39
7.52
7.51
5.4
5.5
4.5
5.0
12
330
410
280
240
340
92
7.2
2.6
2.0
13
–(CH2)10
–(CH2)11
–(CH2)12
—
–
–
–
Lehrmann, H.; Polesskaya, A.; Harel-Bellan, A. Cell Mol. Life Sci. 2001, 58, 728–
736.
3. Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. J. Biol. Chem. 1990, 265, 17174–
17179.
4. Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara, M.
J. Antibiot. 1994, 47, 301–310.
5. Kijima, M.; Yoshida, M.; Sugita, K.; Horinouchi, S.; Beppu, T. J. Biol. Chem. 1993,
268, 22429–22435.
6. De Schepper, S.; Bruwiere, H.; Verhulst, T.; Steller, U.; Andries, L.;
Wouters, W.; Janicot, M.; Arts, J.; Van Heusden, J. J. Pharmacol. Exp. Ther.
2003, 304, 881–888.
7. Pope, M. R.; Ciuffetti, L. M.; Knoche, H. W.; McCrery, D.; Daly, J. M.; Dunkle, L. D.
Biochemistry 1983, 22, 3502–3506.
8. Darkin-Rattray, S. J.; Gurnett, A. M.; Myers, R. W.; Dulski, P. M.;
Crumley, T. M.; Allocco, J. J.; Cannova, C.; Meinke, P. T.; Colletti, S. L.;
Bednarek, M. A.; Singh, S. B.; Goetz, M. A.; Dombrowski, A. W.;
Polishook, J. D.; Schmatz, D. M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93,
13143–13147.
9. Richon, V. M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R. A.;
Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3003–3007.
10. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito, A.; Mariko, Y.;
Yamanashi, T.; Nakanishi, O. J. Med. Chem. 1999, 42, 3001–3003.
11. Komatsu, Y.; Tomizaki, K.; Tsukamoto, M.; Kato, T.; Nishino, N.; Sato, S.;
Yamori, T.; Tsuruo, T.; Furumai, R.; Yoshida, M.; Horinouchi, S.; Hayashi, H.
Cancer Res. 2001, 61, 4459–4466.
12. Nishino, N.; Jose, B.; Okamura, S.; Ebisusaki, S.; Kato, T.; Sumida, Y.; Yoshida, M.
Org. Lett. 2003, 5, 5079–5082.
13. Bhuiyan, M. P. I.; Kato, T.; Okauchi, T.; Nishino, N.; Maeda, S.; Nishino, T. G.;
Yoshida, M. Bioorg. Med. Chem. 2006, 14, 3438–3446.
14. Kahnberg, P.; Lucke, A. J.; Glenn, M. P.; Boyle, G. M.; Tyndall, J. D. A.; Parsons, P.
G.; Fairlie, D. P. J. Med. Chem. 2006, 49, 7611–7622.
15. Nielsen, T. K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. J. Mol.
Biol. 2005, 354, 107–120.
16. (a) Shivashimpi, G. M.; Amagai, S.; Kato, T.; Nishino, N.; Maeda, S.; Nishino, T.
G.; Yoshida, M. Bioorg. Med. Chem. 2007, 15, 7830–7839; (b) Nishino, N.; Jose,
B.; Shinta, R.; Kato, T.; Komatsu, Y.; Yoshida, M. Bioorg. Med. Chem. 2004, 12,
5777–5784; (c) Nishino, N.; Yoshikawa, D.; Watanabe, L. A.; Kato, T.; Jose, B.;
Komatsu, Y.; Sumida, Y.; Yoshida, M. Bioorg. Med. Chem. Lett. 2004, 14, 2427–
2431.
17. (a) Wels, B.; Kruijtzer, J. A. W.; Nijenhuis, W. A. J.; Gispen, W. H.; Adan, R. A. H.;
Liskamp, R. M. J. Bioorg. Med. Chem. 2005, 13, 4221–4227; (b) Mollica, A.;
Guardiani, G.; Davi, P.; Ma, S.; Prreca, F.; Lai, J.; Mannina, L.; Sobolev, A. P.;
Hruby, V. J. J. Med. Chem. 2007, 50, 3138–3142; (c) Deshmukh, P. H.; Schultz-
Fademrecht, C.; Procopiou, P. A.; Vigushin, D. A.; Coombes, C.; Barett, A. G. M.
Adv. Synth. Catal. 2007, 349, 175–183.
Figure 3. Change in (d) hydrophobicity, and (s) activity in cell based test with loop
length of bicyclic tetrapeptides (2–5).
and bicyclic tetrapeptide. Compound 3 corresponds to the fused
ring one of compound 6. The improvement in activity and selectiv-
ity in both cell free and cell based conditions of compound 3 over
compound 6 reflects the importance of closed ring.
In summary, in order to find novel and potent non-aromatic
HDAC inhibitors, we designed and synthesized CHAP31-based
bicyclic tetrapeptide hydroxamic acids by changing the aliphatic
loop length. These inhibitors show potent HDAC inhibitory activity
in vivo and in vitro. They also show some selectivity among the
HDAC isoforms. The aliphatic loop length is important, and eleven
CH2 loop is the optimum for in vivo activity. These results further
confirm the hypothesis that modification of the cap group of HDAC
inhibitors can lead to potent HDAC inhibitors, which may have po-
tential as anticancer agents. We are also carrying out conforma-
tional analysis of these inhibitors by NMR calculation methods.
These results will be published elsewhere.
References and notes
18. Nishino, N.; Shivashimpi, G. M.; Soni, P. B.; Bhuiyan, M. P. I.; Kato, T.; Maeda, S.;
Nishino, T. G.; Yoshida, M. Bioorg. Med. Chem. 2008, 16, 437–445.
19. Han, G.; Tamaki, M.; Hruby, V. J. J. Peptide Res. 2001, 58, 338–341.
1. (a) Hassig, C. A.; Schreiber, S. L. Curr. Opin. Chem. Biol. 1997, 1, 300–308; (b)
Grozinger, C. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 3–16; (c) Yoshida, M.;
Matsuayama, A.; Komatsu, Y.; Nishino, N. Curr. Med. Chem. 2003, 10, 2351–
2358.
2. (a) Urnov, F. D.; Wolffe, A. P. Emerg. Ther. Targets 2000, 4, 665–685; (b)
Mahlknecht, U.; Hoelzer, D. Mol. Med. 2000, 6, 623–644; (c) Timmermann, S.;
20. HPLC analysis was performed on
a Hitachi instrument equipped with a
Chromolith performance RP-18e column (4.6 Â 100 mm, Merck). The mobile
phases used were A: H2O with 0.1% TFA, B: CH3CN with 0.1% TFA using a
solvent gradient of A–B over 15 min with a flow rate of 2 mL/min, with
detection at 220 nm.