Rogness and Larock
JOCArticle
SCHEME 1. Proposed Mechanism
9-Methylacridines have also been used recently in the construction
of new fluorescent probes that emit light at longer wavelengths in
order to inhibit unwanted absorption, autofluorescence, and
scattering by neighboring biological tissue.21 Acridines complexed
with iridium have also been used as triplet state, light emitting
materials for applications in OLEDs.22
Most of the current methods to synthesize acridines
require rather harsh conditions. For example, intramolecu-
lar versions of the original acridine synthesis, the Bernthsen
reaction,23 continue to employ high temperatures and
strongly acidic media.24 Another commonly used method
for preparing acridines involves the reduction of acridones.25
However, until our recent report (eq 1), the syntheses of
acridones have also required high temperatures and strongly
acidic conditions to affect intramolecular electrophilic aro-
matic substitution of N-phenylanthranilic acids.25a,26 Also
published recently were the annulations of 2-oxoaryl azides
and 2-azidobenzenecarbonitrile by benzene, giving rise to a
variety of acridines, including 9-aminoacridine.27
In 2005, Kim et al.28 reported the synthesis of acridines
using 5-arylthianthrenium perchlorates as benzyne precur-
sors to affect [4 þ 2] annulations with ortho-aminoaryl
ketones, esters, and aldehydes (eq 3). Although the scope
of this methodology appears fairly broad, and the yields are
generally good, some drawbacks to this methodology are
evident. Not only is there no commercial source for Kim’s
benzyne precursor, but its synthesis requires the use of a
highly explosive salt, thianthrene cation radical perchlo-
rate.29 In addition, a strongly activated aryl substrate, such
as anisole, is needed in order for the requisite electrophilic
aromatic substitution to take place efficiently. Depending on
the acridine’s ultimate use, one may or may not want the
fluorine and methoxy groups present in the final products.
Lastly, in order to generate benzyne from a 5-arylthianthre-
nium perchlorate, a very strong base, such as LDA, is
needed. These harsh conditions severely limit the types of
functional groups, which can be accommodated. Our ap-
proach to acridines, however, utilizes Kobayashi’s30 very
mild reaction conditions for generating benzynes in situ
through fluorine-induced elimination of o-(trimethylsilyl)-
aryl triflates to affect annulation with commercially avail-
able ortho-aminoaryl ketones and aldehydes.
(17) (a) Fattorusso, C.; Campiani, G.; Kukreja, G.; Persico, M.; Butini,
S.; Romano, M. P.; Altarelli, M.; Ros, S.; Brindisi, M.; Savini, L.; Novellino,
E.; Nacci, V.; Fattorusso, E.; Parapini, S.; Basilico, N.; Taramelli, D.;
Yardley, V.; Croft, S.; Borriello, M.; Gemma, S. J. Med. Chem. 2008, 51,
1333. (b) Giorgio, C. D.; Shimi, K.; Boyer, G.; Delmas, F.; Galy, J. P. Eur. J.
Med. Chem. 2007, 42, 1277. (c) Stocks, P. A.; Bray, P. G.; Barton, V. E.;
Helal, M. A.; Jones, M.; Araujo, N. C.; Gibbons, P.; Ward, S. A.; Hughes,
R. H.; Biagini, G. A.; Davies, J.; Amewu, R.; Mercer, A. E.; Ellis, G.; O’Neill,
P. M. Angew. Chem., Int. Ed. 2007, 46, 6278. (d) Chauhan, P. M. S.;
Srivastava, S. K. Curr. Med. Chem. 2001, 8, 1535.
(18) Patel, N. A.; Sruthi, S. C.; Patel, R. D.; Patel, M. P. Phosphorus,
Sulfur, Silicon Relat. Elem. 2008, 183, 2191.
(19) Dolphin, G. T.; Chierici, S.; Ouberai, M.; Dumy, P.; Garcia, J.
Chembiochem 2008, 9, 952.
(20) Lee, Y.; Hyun, S.; Kim, H. J.; Yu, J. Angew. Chem., Int. Ed. 2007, 47,
134.
(21) Yan, P.; Xie, A.; Wei, M.; Loew, L. M. J. Org. Chem. 2008, 73, 657.
(22) Li, C.; Sun, P.; Yan, L.; Pan, Yi; Cheng, C. H. Thin Solid Films 2008,
516, 6186.
The reaction of ortho-aminoaryl carbonyl compounds and
alkynes containing electron-withdrawing groups is a process
analogous to our aryne methodology.31 First reported in the
1960s, this chemistry affords good yields of the correspond-
ing 2,3,4-trisubstituted quinolines in one step (eq 4). As with
our acridine synthesis, the initially formed secondary alcohol
rapidly dehydrates and forms the more stable aromatic
system. Because the acridine core is important in so many
areas of chemistry and there are currently very few mild,
functionally tolerant methodologies available for the efficient
synthesis of acridines, it was our goal to investigate the scope of
the process described in eq 2, first through optimization of the
(23) (a) Bernthsen, A. Ann. 1878, 192, 1. (b) Bernthsen, A. Ann. 1884,
224, 1.
(24) (a) Popp, F. D. J. Org. Chem. 1962, 27, 2658. For recent synthetic
routes to 9-methylacridine, see: (b) Crawford, L. A.; McNab, H.; Mount, A.
R.; Wharton, S. I. J. Org. Chem. 2008, 73, 6642. (c) Joseph, J.; Kuruvilla, E.;
Achuthan, A. T.; Ramaiah, D.; Schuster, G. B. Bioconjugate Chem. 2004, 15,
1230.
(25) (a) Sourdon, V.; Mazoyer, S.; Pique, V.; Galy, J. P. Molecules 2001,
6, 673. (b) Lartia, R.; Bertrand, H.; Teulade-Fichou, M. P. Synlett 2006, 610.
(c) Ferencz, L.; Farcasan, V.; Silberg, I. A. Rev. Roum. Chim. 2003, 48, 801.
(d) Kamal, A.; Srinivas, O.; Ramulu, P.; Ramesh, G.; Kumar, P. P. Bioorg.
Med. Chem. Lett. 2004, 14, 4107. (e) Antonini, I.; Polucci, P.; Magnano, A.;
Gatto, B.; Palumbo, M.; Menta, E.; Pescalli, N.; Martelli, S. J. Med. Chem.
2003, 46, 3109.
(28) Yoon, K.; Ha, S. M.; Kim, K. J. Org. Chem. 2005, 70, 5741.
(29) Silber, J.; Shine, H. J. Org. Chem. 1971, 36, 2923.
(30) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211.
(31) (a) Hendrickson, J. B.; Rees, R. J. Am. Chem. Soc. 1961, 83, 1250.
(b) Taylor, E. C.; Heindel, N. D. J. Org. Chem. 1967, 32, 1666. (c) Sinsky, M.
S.; Bass, R. G. J. Heterocycl. Chem. 1984, 21, 759.
(26) (a) Wu, M.; Wu, W.; Gao, X.; Lin, X.; Xie, Z. Talanta 2008, 75, 995.
(b) Gopinath, V. S.; Thimmaiah, P.; Thimmaiah, K. N. Bioorg. Med. Chem.
2008, 16, 474. (c) Scarpellini-Charras, K.; Boyer, G.; Filloux, N.; Galy, J. P.
J. Heterocycl. Chem. 2008, 45, 67.
(27) Fraleoni-Morgera, A.; Zanirato, P. ARKIVOC 2006, xii, 111.
2290 J. Org. Chem. Vol. 75, No. 7, 2010