R. Abu Khalaf et al. / European Journal of Medicinal Chemistry 45 (2010) 1598–1617
1617
[4] X. Qiu, A. Mistry, M.J. Ammirati, B.A. Chrunyk, R.W. Clark, Y. Cong, J.S. Culp,
D.E. Danley, T.B. Freeman, K.F. Geoghegan, M.C. Griffor, S.J. Hawrylik,
C.M. Hayward, P. Hensley, L.R. Hoth, G.A. Karam, M.E. Lira, D.B. Lloyd,
K.M. McGrath, K.J. Stutzman-Engwall, A.K. Subashi, T.A. Subashi,
J.F. Thompson, I.K. Wang, H. Zhao, A.P. Seddon, Crystal structure of cholesteryl
ester transfer protein reveals a long tunnel and four bound lipid molecules.
Nat. Struct. Mol. Biol. 14 (2007) 106–113.
[29] P.A. Keller, M. Bowman, K.H. Dang, J. Garner, S.P. Leach, R. Smith,
A.J. McCluskey, Pharmacophore development for corticotropin-releasing
hormone: new insights into inhibitor activity. J. Med. Chem. 42 (1999) 2351–
2357.
[30] R.G. Karki, V.M. Kulkarni, A feature based pharmacophore for Candida albicans
MyristoylCoA: protein N-myristoyltransferase inhibitors. Eur. J. Med. Chem. 36
(2001) 147–163.
[5] S.M. Boekholdt, J.A. Kuivenhoven, N.J. Wareham, R.J.G. Peters, J.W. Jukema,
R. Luben, S.A. Bingham, N.E. Day, J.J.P. Kastelein, K.T. Khaw, Plasma levels of
cholesteryl ester transfer protein and the risk of future coronary artery disease
in apparently healthy men and women. Circulation 110 (2004) 1418–1423.
[6] R. McPherson, C.J. Mann, A.R. Tall, M. Hogue, L. Martin, R.W. Milne, Y.L. Marcel,
Plasma concentration of cholesteryl ester transfer protein in hyper-
lipoproteinemia. Arterioscler. Thromb 11 (1991) 797–804.
[7] M.S. Castilho, S. Marcelo, R.V.C. Guido, A.D. Andricopulo, 2D Quantitative
structure–activity relationship studies on a series of cholesteryl ester transfer
protein inhibitors. Bioorg. Med. Chem. 15 (2007) 6242–6252.
[8] P. Hanumantharao, S.V. Sambasivarao, L.K. Soni, A.K. Gupta, S.G. Kaskhedikar,
QSAR analysis of analogs of bis[2-(acylamino) Ph] disulfides, 2-(acylamino)
benzenethiols and S-[2-(acylamino) Ph] alkanethioates as antihyperlipidemic
agents. Ind. J. Chem., Sect. B, Org. Chem. Includ. Med. Chem. 44B (2005)
1481–1486.
[9] M.A. Kelkar, D.V. Pednekar, S.R. Pimple, K.G. Akamanchi, 3D QSAR studies of
inhibitors of cholesterol ester transfer protein (CETP) by CoMFA, CoMSIA and
GFA methodologies. Med. Chem. Res. 13 (2004) 590–604.
[31] M.O. Taha, A.G. Al-Bakri, W.A. Zalloum, Discovery of potent inhibitors of
pseudomonal quorum sensing via pharmacophore modeling and In silico
screening. Bioorg. Med. Chem. Lett. 16 (2006) 5902–5906.
[32] K. Moffat, V.J. Gillet, M. Whittle, G. Bravi, A.R. Leach, A comparison of field-
based similarity searching methods, CatShape, FBSS, and ROCS. J. Chem. Inf.
Model 48 (2008) 719–729.
[33] R.C. Durley, M.L. Grapperhaus, M.A. Massa, D.A. Mischke, B.L. Parnas,
Y.M. Fobian, N.P. Rath, D.D. Honda, M. Zeng, D.T. Connolly, D.M. Heuvelman,
B.J. Witherbee, K.C. Glenn, E.S. Krul, M.E. Smith, J.A. Sikorski, Discovery of
chiral N, N-disubstituted trifluoro-3-amino-2-propanols as potent inhibitors
of cholesteryl ester transfer protein. J. Med. Chem. 43 (2000) 4575–4578.
[34] M.A. Massa, D.P. Spangler, R.C. Durley, B.S. Hickory, D.T. Connolly,
B.J. Witherbee, M.E. Smith, J.A. Sikorski, Novel heteroaryl replacements of
aromatic 3-tetrafluoroethoxy substituents in trifluoro-3-(tertiary amino)-2-
propanols as potent inhibitors of cholesteryl ester transfer protein. Bioorganic.
Med. Chem. Lett. 11 (2001) 1625–1628.
[35] R.C. Durley, M.L. Grapperhaus, B.S. Hickory, M.A. Massa, J.L. Wang,
D.P. Spangler, D.A. Mischke, B.L. Parnas, Y.M. Fobian, N.P. Rath, D.D. Honda,
M. Zeng, D.T. Connolly, D.M. Heuvelman, B.J. Witherbee, M.A. Melton,
K.C. Glenn, E.S. Krul, M.E. Smith, J.A. Sikorski, Chiral N,N-disubstituted tri-
fluoro-3-amino-2-propanols are potent inhibitors of cholesteryl ester transfer
protein. J. Med. Chem. 45 (2002) 3891–3904.
[10] M.T.D. Cronin, T.W. Schultz, Pitfalls in QSAR. J. Mol. Struct. (Theochem.) 622
(2003) 39–51.
[11] M. Akamatsu, Current state and perspectives of 3D-QSAR. Curr. Top. Med.
Chem. 12 (2002) 1381–1394.
[12] M.O. Taha, Y. Bustanji, M. Al-Ghussein, M. Mohammad, H. Zalloum, I.M. Al-
Masri, N. Atallah, Pharmacophore modeling, quantitative structure–activity
relationship analysis, and in-silico screening reveal potent glycogen synthase
kinase-3beta inhibitory activities for cimetidine, hydroxychloroquine, and
gemifloxacin. J. Med. Chem. 51 (2008) 2062–2077.
[13] I.M. Al-masri, K. Mohammad, M.O. Taha, Discovery of DPP IV inhibitors by
pharmacophore modeling and QSAR analysis followed by in silico screening.
Chem. Med. Chem. 3 (11) (2008) 1763–1779.
[14] M.O. Taha, L.A. Dahabiyeh, Y. Bustanji, H. Zalloum, S. Saleh, Combining ligand-
based pharmacophore modeling, QSAR analysis and in-silico screening for the
discovery of new potent hormone sensitive lipase inhibitors. J. Med. Chem. 51
(2008) 6478–6494.
[15] M.O. Taha, N. Atallah, A.G. Al-Bakri, C. Paradis-Bleau, H. Zalloum, K. Younis,
R.C. Levesque, Discovery of new MurF Inhibitors via pharmacophore modeling
and QSAR analysis followed by in silico screening. Bioorg. Med. Chem. 16
(2008) 1218–1235.
[36] E.J. Reinhard, J.L. Wang, R.C. Durley, Y.M. Fobian, M.L. Grapperhaus,
B.S. Hickory, M.A. Massa, M.B. Norton, M.A. Promo, M.B. Tollefson,
W.F. Vernier, D.T. Connolly, B.J. Witherbee, M.A. Melton, K.J. Regina,
M.E. Smith, J.A. Sikorski, Discovery of a simple picomolar inhibitor of cho-
lesteryl ester transfer protein. J. Med. Chem. 46 (2003) 2152–2168.
[37] R.P. Sheridan, S.K. Kearsley, Why do we need so many chemical similarity
search methods? Drug Discov. Today 7 (2002) 903–911.
[38] R. Fisher, in: The Principle of Experimentation Illustrated by a Psycho-Physical
ExpeHafner Publishing Co, eighth ed. Hafner Publishing, New York, 1966.
[39] A. Tropsha, P. Gramatica, V.K. Gombar, Quant. structure–activity relationship.
Comb. Sci. 22 (2003) 69–77.
[40] CERIUS2 QSAR Users’ Manual. Accelrys Inc., San Diego, CA, 2005.
[41] F.P. Maguna, M.B. Nunez, N.B. Okulik, E.A. Castro, Methodologies QSAR/QSPR/
QSTR: current state and perspectives. Int. J. Chem. Model 1 (2) (2009) 221–243.
[42] L.F. Ramsey, W.D. Schafer, in: The Statistical Sleuth, first ed. Wadesworth
Publishing Company, USA, 1997.
[16] M.O. Taha, Y. Bustanji, A.G. Al-Bakri, M. Yousef, W.A. Zalloum, I.M. Al-Masri,
N. Atallah, Discovery of new potent human protein tyrosine phosphatase
inhibitors via pharmacophore and QSAR analysis followed by in silico
screening. J. Mol. Graphics Model 25 (2007) 870–884.
[17] A.M. Abu Hammad, M.O. Taha, Pharmacophore modeling, quantitative struc-
ture–activity relationship analysis, and shape-complemented in silico
screening allow access to novel influenza neuraminidase inhibitors. J. Chem.
Inf. Model. 49 (2009) 978–996.
[43] E.M. Krovat, T. Langer, Non-peptide angiotensin ii receptor antagonists:
chemical feature based pharmacophore identification. J. Med. Chem. 46
(2003) 716–726.
[44] L.B. Kier, L.H. Hall, in: J. Devillers, A.T. Balaban (Eds.), Topological Indices and
Related Descriptors in QSAR and QSPR, Gordon and Breach, London, 1999, pp.
491–562.
[45] S.W. Homans, Water, water everywhere d except where it matters? Drug
Discov. Today 12 (2007) 534–539.
[18] Catalyst User Guide. Accelrys Software Inc., San Diego, CA, 2005.
[19] P.W. Sprague, R. Hoffmann, in: H. Van de Waterbeemd, B. Testa, G. Folkers
(Eds.), CATALYST Pharmacophore Models and Their Utility As Queries for
Searching 3D Databases, Current Tools for Medicinal Chemistry, VHCA, Basel,
1997, pp. 223–240.
[20] D. Barnum, J. Greene, A. Smellie, P.J. Sprague, IdentificationofCommonFunctional
configurations among molecules. Chem. Inf. Comput. Sci. 36 (1996) 563–571.
[21] A. Smellie, S. Teig, P. Towbin, Poling: promoting conformational variation. J.
Comput. Chem. 16 (1995) 171–187.
[22] H. Li, J. Sutter, R. Hoffmann, in: O.F. Guner (Ed.), Pharmacophore Perception,
Development, and Use in Drug Design, International University Line, Cal-
ifornia, 2000, pp. 173–189.
[23] J. Sutter, O.F. Guner, R. Hoffmann, H. Li, M. Waldman, Effect of Variable
Weights and Tolerances on Predictive Model Generation, Pharmacophore
Perception, Development, and Use in Drug Design. International University
Line, California, 2000, pp. 501–511.
[46] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv. Drug Del. Rev. 46 (2001) 3–26.
[47] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple,
Molecular properties that influence the oral bioavailability of drug candidates.
J. Med. Chem. 45 (2002) 2615–2623.
[48] I. Ivanov, S. Nikolova, S. Statkova-Abeghe, Efficient one-pot friedel–crafts
acylation of benzene and its derivatives with unprotected aminocarboxylic
acids in polyphosphoric acid. Synth. Commun. 36 (2006) 1405–1411.
[49] V. del Amo, D. Philp, Making imines without making water-exploiting
a recognition-mediated Aza-Wittig reaction. Org. Lett. 11 (2009) 301–304.
[50] M.L. Verdonk, L. Marcel, V. Berdini, M.J. Hartshorn, W.T.M. Mooij, C.W. Murray,
R.D. Taylor, P. Watson, Virtual screening using protein-ligand docking:
avoiding artificial enrichment. J. Chem. Inf. Comput. Sci. 44 (2004) 793–806.
[51] J. Kirchmair, P. Markt, S. Distinto, G. Wolber, T. Langer, Evaluation of the
performance of 3D virtual screening protocols: RMSD comparisons, enrich-
ment assessments, and decoy selectiondwhat can we learn from earlier
mistakes? J. Comput. Aided. Mol. Des. 22 (2008) 213–228.
[52] J.J. Irwin, B.K. Shoichet, ZINC – a free database of commercially available
compounds for virtual screening. J. Chem. Inf. Comput. Sci. 45 (2005) 177–182.
[53] N. Triballeau, F. Acher, I. Brabet, J.P. Pin, H.O. Bertrand, Virtual screening
workflow development guided by the ‘‘receiver-operating characteristic’’
curve approach. application to high-throughput docking on metabotropic
glutamate receptor subtype 4. J. Med. Chem. 48 (2005) 2534–2547.
[54] M. Jacobsson, P. Liden, E. Stjernschantz, H. Bostroem, U. Norinder, Improving
structure-based virtual screening by multivariate analysis of scoring data. J.
Med. Chem. 46 (2003) 5781–5789.
[24] Y. Kurogi, O.F. Guner, Pharmacophore modeling and three-dimensional database
searching for drug design using catalyst. Curr. Med. Chem. 8 (2001) 1035–1055.
[25] I.B. Bersuker, S. Bahçeci, J.E. Boggs, Pharmacophore Perception, Development,
}
and Use in Drug Design. in: O.F. Guner (Ed.). International University Line,
California, 2000, pp. 457–473.
[26] K. Poptodorov, T. Luu, R. Hoffmann, in: T. Langer, R.D. Hoffmann (Eds.),
Methods and Principles in Medicinal Chemistry, Pharmacophores and Phar-
macophores Searches, Wiley-VCH, Weinheim 2, 2006, pp. 17–47.
[27] J. Singh, C.E. Chuaqui, P.A. Boriack-Sjodin, W.C. Lee, T. Pontz, M.J. Corbley,
H.K. Cheung, R.M. Arduini, J.N. Mead, M.N. Newman, J.L. Papadatos, S. Bowes,
S. Josiah, L.E. Ling, Successful shape-based virtual screening: the discovery of
a potent inhibitor of the type I TGF
Chem. Lett. 13 (2003) 4355–4359.
b
receptor kinase (T
b
RI). Bioorg. Med.
[55] H. Gao, C. Williams, P. Labute, J. Bajorath, Binary quantitative structure–
activity relationship (QSAR) analysis of estrogen receptor ligands. J. Chem. Inf.
Comput. Sci. 39 (1999) 164–168.
[56] M. Hahn, Three-dimensional shape-based searching of conformationally
flexible compounds. J. Chem. Inf. Comput. Sci. 37 (1997) 80–86.
[28] M.O. Taha, A.M. Qandil, D.D. Zaki, M.A. AlDamen, Ligand-based assessment of
factor Xa binding site flexibility via elaborate pharmacophore exploration and
genetic algorithm-based QSAR modeling. Eur. J. Med. Chem. 40 (2005) 701–727.