research program, we report here the realization of Passerini
three-component reaction starting from alcohols under catalytic
conditions using oxygen as terminal oxidant (Scheme 1).
Table 1. Optimization of Reaction Parametersa
Scheme 1
.
Passerini Reaction of Alcohols under Catalytic
Oxidative Conditions
conversion
of (2a, %)
yield
of 1a,b
%
entry
conditions
1
2
3
4
5
6
7
8
9
A/toluene (0.25 M), O2, 80 °C
B/C6H5F (0.5 M), O2, 80 °C
C/C6H5F (0.5 M), O2, 80 °C
D/DCM (1 M), O2, rt
E/toluene (0.5 M), O2, rt
F/toluene (0.5 M), O2, rt
F/toluene (2.5 M), O2, rt
F/toluene (0.1 M), O2, rt
F/toluene (2.5 M), air, rt
F/toluene (0.5 M), O2, rt
NR
NR
NR
NR
100
100
100
75
0
0
0
0
30
The catalytic aerobic oxidation of alcohols using molecular
O2 as a terminal oxidant has attracted much attention in recent
years.8 Many efficient catalytic systems have been developed
using transition metals alone or in combination with TEMPO
as catalysts.7,9 While a wide range of benzylic alcohols have
been successfully oxidized to aldehydes and ketones, primary
nonactivated alcohols were known to be poor substrates due
to their low reactivities and side reactions such as overoxi-
dation, aldol, or Tishchenko reaction associated with the
resulting aldehydes.8,10-12 In spite of this discouraging
observation, we set out to examine the reaction of 2-phe-
nylethanol (2a), benzyl isocyanide (3a), and benzoic acid
(4a) under catalytic aerobic oxidation conditions, assuming
35
67c
ND
NDc
NDd
50
15
10
a General conditions: 2a/3a/4a )1:1:1, 24 h under conditions specified
as follows. Method A: TPAP (15 mol %), 4 Å molecular sieves. Method
B: CuCl (10 mol %), 1,10-phenantroline (10 mol %), DBAD (10 mol %),
tBuOK (10 mol %), NMI (15 mol %). Method C: CuBr·DMS (5 mol %),
4,4′-dinonyl-2,2′-bipyridine (5 mol %), TEMPO (10 mol %). Method D:
PyHBr3 (20 mol %), TEMPO (5 mol %), NaNO2 (20 mol %). Method E:
FeCl3·5H2O (15 mol %), TEMPO (15 mol %), NaNO2 (15 mol %). Method
F: CuCl2·2H2O (15 mol %), TEMPO (15 mol %), NaNO2 (15 mol %).
b Yield of isolated product. c 2.5 equiv of isonitrile. d In the absence of
NaNO2. Abbreviations: TEMPO ) 2,2,6,6-tetramethylpiperidine 1-oxyl;
TPAP, tetra-n-propylammonium perruthenate; DBAB ) dibenzyl azodi-
carboxylate, NMI ) N-methylimidazole; NR ) no reaction; ND ) not
determined.
(8) For reviews on catalytic aerobic alcohol oxidations, see: (a) Mallat,
T.; Baiker, A. Chem. ReV. 2004, 104, 3037–3058. (b) Marko´, I. E.; Gilles,
P. R.; Tsukazaki, M.; Gautier, A.; Dumeunier, R.; Doda, K.; Philippart, F.;
Chelle´-Regnaut, I.; Mutonkole, J.-L.; Brown, S. M.; Urch, C. J. Aerobic,
Metal-catalyzed Oxidation of Alcohols. In Transition Metals for Organic
Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim,
2004; Vol. 2, pp 437-478. (c) Zhan, B.-Z.; Thompson, A. Tetrahedron
2004, 60, 2917–2935. (d) Sheldon, R. A.; Arends, I. W. C. E. AdV. Synth.
Catal. 2004, 346, 1051–1071. (e) Punniyamurthy, T.; Velusamy, S.; Iqbal,
J. Chem. ReV. 2005, 105, 2329–2364. (f) Schultz, M. J.; Sigman, M. S.
Tetrahedron 2006, 62, 8227–8241. (g) Recupero, F.; Punta, C. Chem. ReV.
2007, 107, 3800–3842. (h) Sheldon, R. A.; Arends, I. W. C. E. J. Mol.
Catal. A: Chem. 2006, 251, 200–214. (i) Seki, T.; Baiker, A. Chem. ReV.
2009, 109, 2409–2454.
that in situ trapping of the aldehyde intermediate by
isocyanide could potentially avoid these aforementioned
undesired pathways. Initial experiments using ruthenium13
and copper14 as metal catalysts (entries 1-3, Table 1) and
under metal-free conditions15 (entry 4) were found to be
ineffective, leading only to the complete decomposition of
isocyanide 3a. Gratefully, the Passerini adduct 1a was
isolated in 30% yield using FeCl3-TEMPO-NaNO2 (0.15
equiv each) catalytic system developed by Liang and Hu
(entry 5, Table 1).16 Replacing FeCl3 by CuCl2 gave a cleaner
reaction, although the yield remained moderate (enrty 6).
By using 2.5 equiv of isocyanide 3a, the yield of 1a increased
to 65% (c ) 2.5 M) under otherwise identical conditions
(entry 7, Table 1). On the other hand, replacing oxygen gas
by air atmosphere (entry 9, Table 1) diminished significantly
the reaction efficiency. Another key factor is the concentra-
tion. The reaction had to be performed at high concentration
to guarantee the success of the overall domino process
(9) For transition metal/TEMPO-catalyzed aerobic alcohol oxidations,
see: (a) Gassama, A.; Hoffmann, N. AdV. Synth. Catal. 2008, 350, 35–39.
(b) Jiang, N.; Ragauskas, A. J. ChemSusChem 2008, 1, 823–825. (c)
Mannam, S.; Alamsetti, S. K.; Sekar, G. AdV. Synth. Cata. 2007, 349, 2253–
2258. (d) Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem.
Soc. 2006, 128, 8412–8413. (e) Jiang, N.; Ragauskas, A. J. J. Org. Chem.
2006, 71, 7087–7090. (f) Valusamy, S.; Srinivasan, A.; Punniyamurthy, T.
Tetrahedron Lett. 2006, 47, 923–926. (g) Jiang, N.; Ragauskas, A. J. Org.
Lett. 2005, 7, 3689–3692. (h) Minisci, F.; Recupero, F.; Cecchetto, A.;
Gambarotti, C.; Punta, C.; Faletti, R.; Paganelli, R.; Pedulli, G. F. Eur. J.
Org. Chem. 2004, 10, 9–119. (i) Minisci, F.; Recupero, F.; Pedulli, G. F.;
Lucarini, M. J. Mol. Catal. A: Chem. 2003, 204, 63–90. (j) Gamez, P.;
Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem. Commun. 2003,
2414–2415. (k) Ansari, I. A.; Gree, R. Org. Lett. 2002, 4, 1507–1509. (l)
Ben-Daniel, R.; Alsters, P.; Neumann, R. J. Org. Chem. 2001, 66, 8650–
8656. (m) Dijksman, A.; Mmarino-Gonzalez, A.; Payeras, A. M. I.; Arends,
I. W. C. E.; Sheldon, R. A. J. Am. Chem. Soc. 2001, 123, 6826–6833. (n)
Cecchetto, A.; Fontana, F.; Minisci, F.; Recupero, F. Tetrahedron Lett. 2001,
(13) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle´- Regnaut, I.; Urch,
C. J.; Brown, S. M. J. Am. Chem. Soc. 1997, 119, 12661–12662.
(14) (a) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch,
C. J. Science 1996, 274, 2044–2046. (b) Marko´, I. E.; Giles, P. R.;
Tsukazaki, M.; Chelle´-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J.
J. Org. Chem. 1999, 64, 2433–2439. (c) Betzemeier, B.; Cavazzini, M.;
Quici, S.; Kno¨chel, P. Tetrahedron Lett. 2000, 41, 4343–4346.
(15) (a) Wang, N.; Liu, R.; Chen, J.; Liang, X. Chem. Commun. 2005,
5322–5324. (b) Wang, X.; Liu, R.; Jin, Y.; Liang, X. Chem.sEur. J. 2008,
14, 2679–2685. (c) He, X.; Shen, Z.; Mo, W.; Sun, N.; Hu, B.; Hu, X.
AdV. Synth. Catal. 2009, 351, 89–92.
42, 6651–6653
.
(10) (a) Seki, T.; Nakajo, T.; Onaka, M. Chem. Lett. 2006, 35, 824–
829. (b) Figiel, P. J.; Leskel, M.; Repo, T. AdV. Synth. Catal. 2007, 349,
1173–1179
.
(11) Aldehydes have been used as sacrificial co-oxidants in aerobic
oxidation of olefins; see: Loeker, F.; Leitner, W. Chem.sEur. J. 2000, 6,
2011–2015
.
(12) Marko´’s procedure is an exception; see: Marko´, I. E.; Gautier, A.;
Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J. Angew.
(16) Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004, 126,
4112–4113.
Chem., Int. Ed. 2004, 43, 1588–1591
Org. Lett., Vol. 12, No. 7, 2010
.
1433