conformation and that this is largely dictated by the out-of-
plane sterically hindered ring B benzoate, the anti-diol and the
E-alkene moieties.
1 W. Eder, M. J. Ege and E. von Mutius, N. Engl. J. Med., 2006, 355,
2226.
2 H. J. Gould and B. J. Sutton, Nat. Rev. Immunol., 2008, 8, 205.
3 (a) B. J. Sutton, A. J. Beavil, R. L. Beavil and J. Hunt, Allergy and
Allergic Diseases, ed. A. B. Kay, A. P. Kaplan, J. Bousquet and
P. G. Holt, Wiley-Blackwell, Oxford, 2008, ch. 5, vol. 1, p. 103;
(b) B. A. Helm, I. Sayers, J. R. M. Swan, L. J. C. Smyth,
S. A. Cain, M. Suter, D. C. Machado, A. C. Spivey and
E. A. Padlan, Technol. Health Care, 1998, 6, 195.
The ability of compounds (ꢀ)-1 and (ꢀ)-15a to block the
IgE–FceRI PPI was investigated using an ELISA binding
assay (see ESIw). Interestingly, aspercyclide A (1) and its
methyl ether 15a were found to be comparably potent antagonists
of the IgE–FceRI PPI [(ꢀ)-15a IC50 = 95 ꢀ 10 mM; (ꢀ)-1
IC50 = 110 ꢀ 10 mM].ww Since the synthesis of methyl ether
15a benefits from having commercially available acetal 4a as
starting material, analogues of this compound may prove
useful for future structure–activity relationship (SAR) studies.
In summary, we have developed a short synthesis of (ꢀ)-
aspercyclide A (7 steps, 6% yield overall) that employs a
Boeckman modified Takai–Utimoto acrolein acetal–hexanal
condensation to establish the anti-diol motif and a Heck–
Mizoroki reaction to close the 11-membered ring. We plan to
use this route to prepare more analogues and build up SAR
data. We also plan to employ surface plasmon resonance
(SPR) direct binding studies with both protein partners to
establish the binding site of these derivatives as a prelude to
trying to obtain co-crystals with the appropriate protein
partner.
5 For an excellent review of the challenges of developing small
molecule PPI antagonists see: J. A. Wells and C. L. McClendon,
Nature, 2007, 450, 1001.
6 (a) G. R. Nakamura, M. A. Starovasnik, M. E. Reynolds and
H. B. Lowman, Biochemistry, 2001, 40, 9828; G. R. Nakamura,
M. E. Reynolds, Y. M. Chen, M. A. Starovasnik and
H. B. Lowman, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 1303;
A. Buku, G. Maulik and W. A. Hook, Peptides, 1998, 19, 1;
A. Buku, I. Keselman, D. Lupyan, M. Mezei and J. A. Price,
Chem. Biol. Drug Des., 2008, 72, 133; J. M. McDonnell,
A. J. Beavil, G. A. Mackay, B. A. Jameson, R. Korngold,
H. J. Gould and B. J. Sutton, Nature, 1996, 3, 419; W. Danho,
R. Makofske, J. Swistok, M. Mallamaci, M. Nettleton,
V. Madison, D. Greeley, D. Fry and J. Kochan, Peptides: Frontiers
of Peptide Science, Proceedings of the American Peptide Symposium,
1997, Nashville, Springer, The Netherlands, p. 539; B. A. Helm,
A. C. Spivey and E. A. Padlan, Allergy, 1997, 52, 1155;
A. C. Spivey, J. McKendrick, R. Srikaran and B. A. Helm,
J. Org. Chem., 2003, 68, 1843; (b) T. Wiegand, P. B. Williams,
S. C. Dreskin, M.-H. Jouvin, J.-P. Kinet and D. Tasset,
J. Immunol., 1996, 157, 221; (c) Y.-S. E. Cheng, Y. Liu, J. Chu,
J.-P. Kinet, M.-H. Jouvain, Y. Sudo and X. Quian, US 5 965 605,
1999 and WO 9 740 033(A1), 1997.
The EPSRC, MRC, Asthma UK, Imperial College
London and BayerCropScience, Frankfurt, Germany (JLC
studentship), are thanked for financial support of this work.
7 S. B. Singh, H. Jayasuriya, D. L. Zink, J. D. Polishook,
A. W. Dombrowski and H. Zweerink, Tetrahedron Lett., 2004,
45, 7605.
Notes and references
z The anti stereochemistry of the major diastereomer was confirmed
by obtaining a single crystal structure determination on its ester
derivative 7a. See ESI.w
y PMB-acetal 4b was prepared from acrolein and the TMS-ether of
4-methoxybenzyl alcohol. See ESI.w
z The benzoic acid precursor to acid chloride 6 is commercially
available. We employed (COCl)2 and DMF (cat.) in CH2Cl2 for its
conversion to acid chloride 6. See ESI.w
8 Synthesis of bromoquinol 8 was via bromination of gentisaldehyde
(Br2, CHCl3), reduction (NaBH4, NaOHaq) and protection (DMP, CSA).
The regioselectivity of the bromination was verified by a single crystal
structure determination on the benzoate of bromoquinol 8. See ESI.w
** The 1H and 13C NMR spectra of synthetic (ꢀ)-1 matched those of
the natural (+)-aspercyclide A, a sample of which was kindly supplied
by Sheo B. Singh, Merck Research Laboratories, Rahway Basic
Chemistry NMR, NJ, USA.
ww These IC50 values are for racemic samples for which the unnatural
(ꢁ)-enantiomer is expected to be inactive. They are lower than that
reported for the natural (+)-aspercyclide (IC50 200 mM, ref. 7) but our
ELISA protocol does differ from that reported, see ESI.w
8 (a) A. Furstner and C. Muller, Chem. Commun., 2005, 5583;
¨
¨
(b) C. V. Ramana, M. A. Mondal, V. G. Puranik and
M. K. Gurjar, Tetrahedron Lett., 2007, 48, 7524; (c) J. Pospısil,
C. Muller and A. Furstner, Chem.–Eur. J., 2009, 15, 5956.
´
¨
¨
9 (a) R. K. Boeckman Jr. and R. A. Hudack Jr., J. Org. Chem., 1998,
63, 3524; (b) K. Takai, K. Nitta and H. Utimoto, Tetrahedron
Lett., 1988, 29, 5263; (c) for an excellent review see: A. Furstner,
Chem. Rev., 1999, 99, 991.
¨
10 N. N. Kulkarni, V. S. Kulkarni, S. R. Lele and B. D. Hosangadi,
Tetrahedron, 1988, 44, 5145.
11 For a review see: J. P. Knowles and A. Whiting, Org. Biomol.
Chem., 2007, 5, 31.
12 L.-C. Campeau, M. Parisien, A. Jean and K. Fagnou, J. Am.
Chem. Soc., 2006, 128, 581.
13 G. A. Grasa, R. Singh, E. D. Stevens and S. P. Nolan,
J. Organomet. Chem., 2003, 687, 269.
14 (a) A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124,
14844; (b) For a review see: T. D. Sheppard, Org. Biomol. Chem.,
2009, 7, 1043.
ꢂc
This journal is The Royal Society of Chemistry 2010
1826 | Chem. Commun., 2010, 46, 1824–1826