4984 Macromolecules, Vol. 43, No. 11, 2010
Bohle et al.
Figure 13. POM of OPBA-4-PEG45 images at 105 °C. (A) and (B) show a certain position of the sample but rotated by 45°. (C) Birefringent
nonspecific texture.
the range of 120-160 ppm exhibit almost no changes, the
PEG signal at 71 ppm narrows substantially above 332 K.
Thus, the phase transition detected by DSC reflects melting
of the PEG block only. This is in accord with the statement in
the literature that the rodlike character is retained under
virtually all circumstances.2
Probing the formation of a liquid crystalline phase with
a polarization optical microscope (POM) is presented in
Figure 13, and these indeed show that above the melting
temperature a liquid crystalline phase is formed for all the
examined rod-coil copolymers. Rotation of the samples
exhibited alternately birefringent and dark textures every
45° (shown in Figure 13A,B). The nonspecific textures can be
sheered but have not been assigned to a certain kind of
mesophase. It is known that the presence of a liquid crystal-
line phase favors supramolecular organization when cooling
down to a solid phase.33,46 Thus, the better local order of the
aggregation in the rod-coil copolymer noted above is likely
to be due to the preorganization in the liquid crystalline
phase.
(5) Segalman, R. A.; McCulloch, B.; Kirmayer, S.; Urban, J. J.
Macromolecules 2009, 42, 9205–9216.
(6) Osaheni, J. A.; Jenekhe, S. A. J. Am. Chem. Soc. 1995, 117, 7389–
7398.
(7) de Boer, B.; Stalmach, U.; van Hutten, P. F.; Melzer, C.; Krasnikov,
V. V.; Hadziioannou, G. Polymer 2001, 42, 9097–9109.
(8) Schleuss, T. W.; Abbel, R.; Gross, M.; Schollmeyer, D.; Frey, H.;
Maskos, M.; Berger, R.; Kilbinger, A. F. M. Angew. Chem., Int. Ed.
2006, 45, 2969–2975.
€
(9) Konig, H. M.; Kilbinger, A. F. M. Angew. Chem., Int. Ed. 2007, 46,
8334–8340.
(10) Abbel, R.; Frey, H.; Schollmeyer, D.; Kilbinger, A. F. M. Chem.;
Eur. J. 2005, 11, 2170–2176.
(11) Abbel, R.; Schleuss, T. W.; Frey, H.; Kilbinger, A. F. M. Macro-
mol. Chem. Phys. 2005, 206, 2067–2074.
€
(12) Konig, H. M.; Gorelik, T.; Kolb, U.; Kilbinger, A. F. M. J. Am.
Chem. Soc. 2007, 129, 704–708.
(13) Gabellini, A.; Novi, M.; Ciferri, A.; Dell’Erba, C. Acta Polym.
1999, 50, 127–134.
(14) Brown, S. P.; Spiess, H. W. Chem. Rev. 2001, 101, 4125–4155.
(15) Chierotti, M. R.; Gobetto, R. Chem. Commun. 2008, 14, 1621–
1634.
(16) Emmler, T.; Gieschler, S.; Limbach, H. H.; Buntkowsky, G. J. Mol.
Struct. 2004, 700, 29–38.
(17) Brunner, E.; Sternberg, U. Prog. Nucl. Magn. Reson. Spectrosc.
1998, 32, 21–57.
(18) Yamauchi, K.; Kuroki, S.; Fujii, K.; Ando, I. Chem. Phys. Lett.
2000, 324, 435–439.
(19) Schmidt, J.; Hoffmann, A.; Spiess, H. W.; Sebastiani, D. J. Phys.
Chem. B 2006, 110, 23204–23210.
(20) Gu, Z. T.; Redenour, C. F.; Bronnimann, C. E.; Iwashita, T.;
McDermott, A. J. Am. Chem. Soc. 1996, 118, 822–829.
(21) Lazzeretti, P. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36,
1–88.
IV. Conclusion
The structures of both unsubstituted OPBAs and OP-
BA-PEG rod-coil copolymers have been investigated by so-
lid-state NMR, WAXS, DSC, and POM. It was found that
longer OPBAs form hydrogen-bonded layered β-sheet-like ag-
gregates, which are remarkably stable and apparently reflect an
equilibrium structure. This equilibrium structure is retained after
PEG attachment forming a rod-coil copolymer. At elevated
temperatures a transition to a liquid crystalline phase of the rod-
coil copolymer is observed by DSC, and from solid-state NMR
this has been ascribed to melting of the PEG coil, where the
aggregates of the OPBA rods are preserved. Because of the
preorganization in the liquid crystalline phase, an improvement
of the local order is observed for the OPBA rod in the copolymer.
(22) Brown, S. P. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 199–251.
€
(23) Brown, S. P.; Schnell, I. S.; Brand, D.; Mullen, K.; Spiess, H. W.
J. Am. Chem. Soc. 1999, 121, 6712–6718.
(24) Sebastiani, D. ChemPhysChem. 2006, 7, 164–175.
(25) Harris, R. K. Analyst 2006, 131, 351–373.
(26) Harris, R. K. Solid-State Sci. 2004, 6, 1025–1037.
(27) Gitsas, A.; Floudas, G.; Mondeshki, M.; Spiess, H. W.; Aliferis, T.;
Iatrou, H.; Hadjichristidis, N. Macromolecules 2008, 41, 8072–
8080.
Acknowledgment. We thank Verona Maus und Michelle
Drechsler for measuring DSC and the Deutsche Forschungsge-
meinschaft (SFB 625) for financial support.
(28) Gullion, T. Magn. Reson. Rev. 1997, 17, 83–131.
€
(29) Saalwachter, K.; Schnell, I. Solid State Nucl. Magn. Reson. 2002,
22, 154–187.
€
(30) Saalwachter, K.; Graf, R.; Spiess, H. W. J. Magn. Reson. 1999, 140,
Note Added after ASAP Publication. This paper was
published on the Web on May 3, 2010, with the incorrect
artwork for Figure 12. The corrected version was reposted on
May 5, 2010.
471–476.
(31) Paul, S. M. D.; Saalwachter, K.; Graf, R.; Spiess, H. W. J. Magn.
Reson. 2000, 146, 140–156.
(32) Hentschel, R.; Sillescu, H.; Spiess, H. W. Polymer 1981, 22, 1516–
€
1521.
(33) Hansen, M. R.; Schnitzler, T.; Pisula, W.; Graf, R.; Mullen, K.;
Spiess, H. W. Angew. Chem., Int. Ed. 2009, 48, 4621–4624.
(34) Feike, M.; Demco, D. E.; Graf, R.; Gottwald, J.; Hafner, S.; Spiess,
H. W. J. Magn. Res. Ser. A 1996, 122, 214–221.
(35) Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshimi, K. V.;
Griffin, R. G. J. Chem. Phys. 1995, 103, 6951–6958.
(36) Muntean, J. V.; Stock, L. M.; Botto, R. E. J. Magn. Reson. 1988,
76, 540–542.
€
References and Notes
(1) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. Rev. 2001, 101, 3869–3892.
(2) Klok, H.-A.; Langenwalter, J. F.; Lecommandoux, S. Macromole-
cules 2000, 33, 7819–7826.
(3) Olsen, B. D.; Segalman, R. A. Macromolecules 2005, 38, 10127–
10137.
(4) Olsen, B. D.; Segalman, R. A. Macromolecules 2006, 39, 7078–
7083.
(37) Morkombe, C. R.; Zilm, K. J. Magn. Reson. 2003, 162, 479–486.