Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
luliangqiu@mail.ccnu.edu.cn; lanyu@cqu.edu.cn;
Catalyzed Asymmetric Cross-Couplings of Racemic Propargylic
Halides with Arylzinc Reagents. J. Am. Chem. Soc. 2008, 130,
12645-12647. (f) Oelke, A. J.; Sun, J.-W.; Fu, G. C. Nickel-
Catalyzed Enantioselective Cross-Couplings of Racemic
Secondary Electrophiles That Bear an Oxygen Leaving Group. J.
Am. Chem. Soc. 2012, 134, 2966-2969. (g) Schley, N. D.; Fu, G.
C. Nickel-Catalyzed Negishi Arylations of Propargylic Bromides:
A Mechanistic Investigation. J. Am. Chem. Soc. 2014, 136,
16588-16593. (h) Watanabe, K.; Miyazaki, Y.; Okubo, M.; Zhou,
B.; Tsuji, H.; Kawatsura, M. Nickel-Catalyzed Asymmetric
Propargylic Amination of Propargylic Carbonates Bearing an
Internal Alkyne Group. Org. Lett. 2018, 20, 5448-5451.
(7) (a) Moonen, N. N. P.; Pomerantz, W. C.; Gist, R.; Boudon,
Corinne.; Gisselbrecht, J. P.; Kawai, T.; Kishioka, A.; Gross, M.;
Irie, M.; Diederich, F. Donor-substituted Cyanoethynylethenes: p-
Conjugation and Band-gap Tuning in Strong Charge-Transfer
Chromophores. Chem. Eur. J. 2005, 11, 3325-3341. (b) Hamlin,
A. M.; Cortez, F.; Lapointe, D.; Sarpong, R. Gallium(III)-
Catalyzed Cycloisomerization Approach to the Diterpenoid
Alkaloids: Construction of the Core Structure for the Hetidines
and Hetisines. Angew. Chem., Int. Ed. 2013, 52, 4854-4857.
(8) (a) Stuart, J. G.; Nicholas, K. M. Cobalt-mediated Synthesis of
Propargyl Nitriles and α-Alkoxy Propargyl Nitriles. Synthesis.
1989, 6, 454-455. (b) Marson, C. M.; Grabowska, U.; Walsgrove,
T.; Eggleston, D. S.; Baures, P. W. Stereocontrolled Construction
of Condensed γ-Lactam Ring Systems by Cationic Cyclizations.
Rearrangement of a γ-Lactam to a δ-Lactam. J. Org. Chem. 1994,
59, 284-290.
(9) (a) Sekiya, A.; Ishikawa, N. Facile Synthesis of Aryl Cyanides
from Iodides Catalyzed by Palladium Triphenylphosphine
Complex. Chem. Lett. 1975, 4, 277-278. (b) Takagi, K.; Tadashi,
O.; Yasumasa, S.; Atsuyoshi, O.; Shinzaburo, O.; Naomi, H.
Nucleophilic Sisplacement Catalyzed by Transition Metal. III.
Kinetic Investigation of the Cyanation of Iodobenzene Catalyzed
by Palladium(II). Bull. Chem. Soc. Jpn. 1976, 49, 3177-3180. (c)
Malapit, C. A.; Reeves, J. T.; Busacca, C. A.; Howell, A. R.;
Senanayake, C. H. Rhodium-Catalyzed Transnitrilation of Aryl
Boronic Acids with Dimethylmalononitrile. Angew. Chem., Int.
Ed. 2016, 55, 326-330.
(10) (a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.-H.; Chen,
P.-H.; Stahl, S. S.; Liu, G. Enantioselective Cyanation of Benzylic
C–H Bonds via Copper-catalyzed Radical Relay. Science 2016,
353, 1014-1018. (b) Wang, F.; Wang, D.-H.; Wan, X.; Wu, L.;
Chen, P.; Liu, G.; Enantioselective Copper-Catalyzed
Intermolecular Cyanotrifluoromethylation of Alkenes via Radical
Process. J. Am. Chem. Soc. 2016, 138, 15547-15550. (c) Wang, D.-
H.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Enantioselective Copper-
Catalyzed Intermolecular Amino- and Azidocyanation of Alkenes
in a Radical Process. Angew. Chem. Int. Ed. 2017, 56, 2054-2058.
(d) Wang, D.-H.; Zhu, N.; Chen, P.-H.; Lin, Z.-Y.; Liu, G.
Author Contributions
#F.-D.L. and D.L. contributed equally to this work.
Notes
The authors declare no competing financial interests.
9
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We are grateful to the National Science Foundation of China (No.
21822103, 21820102003, 21822303, 21772052, 21772053,
21572074 and 21472057), the Program of Introducing Talents of
Discipline to Universities of China (111 Program, B17019), the
Natural Science Foundation of Hubei Province (2017AHB047)
and the International Joint Research Center for Intelligent
Biosensing Technology and Health for support of this research.
We thank Prof. Fang-Fang Pan in CCNU for the X-ray diffraction
analysis of single crystal, and thank Prof. Jia-Rong Chen in
CCNU for helpful discussions.
REFERENCES
(1) (a) Trost, B. M.; Li, C.-J. Modern Alkyne Chemistry: Catalytic
and Atom-Economic Transformations; Wiley-VCH: New York,
2014. (b) Trotuş, I. T.; Zimmermann, T.; Schüth, F. Catalytic
Reactions of Acetylene: A Feedstock for the Chemical Industry
Revisited. Chem. Rev. 2014, 114, 1761-1782. (c) Tiwari, V. K.;
Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X.
Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem.
Rev. 2016, 116, 3086-3240. (d) Huang, D.; Liu, Y.; Qin, A.-J.;
Tang, B.-Z. Recent Advances in Alkyne-based Click
Polymerizations. Polym. Chem. 2018, 9, 2853-2867.
(2) (a) Nicholas, K. M.; Pettit, R. An Alkyne Protecting Group.
Tetrahedron Lett. 1971, 37, 3475-3478. (b) Nicholas, K. M.; Pettit,
R. Stability of α-(Alkynyl)dicobalt Hexacarbonyl Carbonium Ions.
J. Organomet. Chem. 1972, 44, 21-24.
(3) (a) Nicholas, K. M. Chemistry and Synthetic Utility of
Cobalt-Complexed Propargyl Cations. Acc. Chem. Res. 1987, 20,
207-214. (b) Kürti, L.; Czakó, B. Strategic Applications of Named
Reactions in Organic Synthesis; Elsevier Academic Press, 2005,
pp 344-315. (c) Imada, Y.; Yuasa, M.; Nakamura, I.; Murahashi,
S. I. Copper(I)-catalyzed Amination of Propargyl Esters. Selective
Synthesis of Propargylamines, 1-Alken-3-ylamines, and (Z)-
Allylamines. J. Org. Chem. 1994, 59, 2282-2284.
(4) (a) Geri, R.; Oilizzi, C.; Lardicci, L.; Caporusso, A. M.
Reactions of Nitrogen Nucleophiles with 1-Bromoallenes:
Regioselective Synthesis of Propargylamines. Gazz. Chim. Ital.
1994, 124, 241-248. (b) Godfrey, J. D.; Mueller, R. H.; Sedergran,
T. C.; Soundararajan, N.; Colandrea, V. J. Improved Synthesis of
Aryl 1,1-Dimethylpropargyl Ethers. Tetrahedron Lett. 1994, 35,
6405-6408.
(5) Nishibayashi, Y.; Wakiji, I.; Hidai, M. Novel Propargylic
Substitution Reactions Catalyzed by Thiolate-Bridged
Diruthenium Complexes via Allenylidene Intermediates. J. Am.
Chem. Soc. 2000, 122, 11019-11020.
(6) (a) Bruneau, C.; Dixneuf, P. H. Metal Vinylidenes and
Allenylidenes in Catalysis; Wiley-VCH: Weinheim, 2008. (b)
Miyake, Y.; Uemura, S.; Nishibayashi, Y. Catalytic Propargylic
Substitution Reactions. ChemCatChem. 2009, 1, 342-356. (c)
Ding, C.-H.; Hou, X.-L. Catalytic Asymmetric Propargylation.
Chem. Rev. 2011, 111, 1914-1937. (d) Zhang, D.-Y.; Hu, X.-P.
Recent Advances in Copper-Catalyzed Propargylic Substitution.
Tetrahedron Lett. 2015, 56, 283-295. For other selected examples
with nickel catalysts: (e) Smith, S. W.; Fu, G. C. Nickel-
Enantioselective
Decarboxylative
Cyanation
Employing
Cooperative Photoredox Catalysis and Copper Catalysis. J. Am.
Chem. Soc. 2017, 139, 15632-15635. (e) Wang, F.; Chen, P.-H.;
Liu, G.-S. Copper-Catalyzed Radical Relay for Asymmetric
Radical Transformations. Acc. Chem. Res. 2018, 51, 2036-2046.
An elegant work from others: (f) Sha, W.; Deng, L.; Ni, S.; Mei,
H.; Han, J.; Pan, Y. Merging Photoredox and Copper Catalysis:
Enantioselective Radical Cyanoalkylation of Styrenes. ACS Catal.
2018, 8, 7489-7494.
(11) (a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J.
Exploration of Visible-Light Photocatalysis in Heterocycle
Synthesis and Functionalization: Reaction Design and Beyond.
Acc. Chem. Res. 2016, 49, 1911-1923. (b) Ding, W.; Lu, L.-Q.;
Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. Bifunctional
Photocatalysts for Enantioselective Aerobic Oxidation of β-
ACS Paragon Plus Environment