A. P. Mityuk et al. / Tetrahedron Letters 51 (2010) 1790–1792
1791
References and notes
O
H
N
H2N
n
1. Feher, M.; Schmidt, J. M. J. Chem. Inf. Comput. Sci. 2003, 43, 218–227.
O
NaN3
2. (a) Erlanson, D. A.; McDowell, R.; O’Brien, T. J. Med. Chem. 2004, 47, 3463–3482;
(b) Alex, A. A.; Flocco, M. M. Curr. Topic Med. Chem. 2007, 7, 1544–1567; (c)
Hajhuk, P. J.; Greer, J. Nat. Rev. Drug Disc. 2007, 6, 211–219.
3. (a) Patrick, G. L. An Introduction to Medicinal Chemistry; Oxford University Press:
New York, 2005. pp 210–213; (b) Komarov, I. V.; Grygorenko, O. O.; Turov, A.
V.; Khilya, V. P. Russ. Chem. Rev. 2004, 73, 785–810.
4. (a) Kotti, S. R. S. S.; Timmons, C.; Li, G. Chem. Biol. Drug Des. 2006, 67, 101–114;
(b) Shivanyuk, A. N.; Volochnyuk, D. M.; Komarov, I. V.; Nazarenko, K. G.;
Radchenko, D. S.; Kostyuk, A.; Tolmachev, A. A. Chem. Today 2007, 25, 12–13.
5. Terrett, N. K.; Bell, S. A.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6,
1819–1824.
O
+
H2SO4
N
n
n
N
N
Ph
Ph
Ph
11, n = 1
12, n = 2
13, n = 3
14, n = 4
15, n = 1, 71%
16, n = 2, 23%
17, n = 2, 40%
18, n = 3, 65%
19, n = 4, 60%
Scheme 2.
6. Sielecki, T. M.; Boylan, J. F.; Benfield, P. A.; Trainor, J. L. J. Med. Chem. 2000, 43,
1–18.
7. Kleinman, E. F. Eur. Patent EP 297858, 1989; Chem. Abstr. 1989, 110, 173112.
8. Hammond, P. S.; Mazurov, A. A.; Miao, L.; Xiao, Y.-D.; Bhatti, B.; Strachan, J.-P.;
Murthy, V. S.; Kombo, D. C.; Akireddy, S. R. PCT Int. Pat. WO 2008112734, 2008;
Chem. Abstr. 2008, 149, 378709.
9. Mityuk, A. P.; Denisenko, A. V.; Dacenko, O. P.; Grygorenko, O. O.; Mykhailiuk, P. K.;
Volochnyuk, D. M.; Shishkin, O. V.; Tolmachev, A. A. Synthesis 2010, 493–497.
10. (a) Schmidt, K. F. Ber. 1924, 57, 704; (b) Wolff, H.. In Organic Reactions; Adams,
R., Ed.; Wiley-VCH: New York, 1946; Vol. 3, p 307.
11. Schmidt reaction of ketones 11–14 (general procedure, the reaction of 3-benzyl-3-
aza-bicyclo[3.2.1]octan-8-one (11) is given as an example): To a mixture of CHCl3
(66 mL) and H2SO4 (40 g), ketone 11 (9.4 g, 44 mmol) was added slowly
followed by NaN3 (3.4 g) at 10–20 °C with stirring (Caution: External cooling
should be used). The resulting mixture was stirred overnight, then slowly
added to an excess of saturated aqueous NaHCO3 (700 mL) and extracted with
CH2Cl2 (3 Â 150 mL). The combined organic extracts were dried over Na2SO4
and then evaporated to dryness. The residue was recrystallized from benzene–
hexanes to give 7.1 g (31 mmol, 71%) of 1-benzyl-2,3,4,7-tetrahydro-1H-
azepine-3-carboxamide (15) as a white solid. Mp 109 °C. MS (m/z, CI): 231
(MH+). Anal. Calcd for C14H18N2O: C, 73.01; H, 7.88; N, 12.16. Found: C, 73.37;
H, 8.03; N, 11.96. 1H NMR (CDCl3), d: 7.61 (br s, 1H, CONHH), 7.35 (t, J = 7.0 Hz,
2H, C6H5), 7.30 (m, 3H, C6H5), 5.88 (m, 1H, 5- or 6-CH), 5.77 (m, 1H, 5- or 6-CH),
5.75 (br s, 1H, CONHH), 3.66 (d, J = 13.1 Hz, 1H, CHHC6H5), 3.62 (d, J = 13.1 Hz,
1H, CHHC6H5), 3.28 (m, 2H), 3.01 (dd, J = 15.2 and 4.4 Hz, 1H), 2.80 (dd, J = 13.0
and 2.2 Hz, 1H, CHH), 2.69 (m, 1H), 2.63 (m, 1H), 2.46 (d, J = 15.2 Hz, 1H). 13C
NMR (CDCl3), d: 177.1 (C@O), 138.1 (1-C of C6H5), 131.2 (CH), 129.5 (CH), 129.0
(CH), 128.5 (CH), 127.5 (CH), 63.1 (CH2), 60.6 (CH2), 54.3 (CH2), 43.4 (3-CH),
30.7 (4-CH2).
O
H
N
NaN3
H2SO4
O
O
O
N
N
Ph
Ph
20
21
Scheme 3.
H
N
H
N
O
LiAlH4
n
n
N
N
Ph
Ph
17, n = 2
18, n = 3
19, n = 4
22, n = 2, 96%
23, n = 3, 95%
24, n = 4, 85%
Scheme 4.
12. 1-Benzyl-1,2,3,4,5,8-hexahydro-azocine-3-carboxamide (16) was obtained
from 3-benzyl-3-azabicyclo[3.3.1]nonan-9-one (12) in 23% (1.8 g) yield after
purification by flash chromatography of the mother liquor obtained by
recrystallization of 17 [hexanes–2-propanol (3:1)]. Mp 88–89 °C (benzene–
hexanes). MS (m/z, CI): 245 (MH+). Anal. Calcd for C15H20N2O: C, 73.74; H, 8.25;
N, 11.46. Found: C, 73.99; H, 8.51; N, 11.09. 1H NMR (CDCl3), d: 7.33 (m, 4H,
C6H5), 7.29 (m, 1H, 4-CH of C6H5), 6.69 (br s, 1H, NH), 5.89 (m, 1H, CH@CH),
5.60 (br s, 1H, NHH), 5.56 (m, 1H, CH@CH), 3.67 (d, J = 13.2 Hz, 1H, CHHC6H5),
3.61 (d, J = 13.2 Hz, 1H, CHHC6H5), 3.41 (dd, J = 15.4 and 6.5 Hz, 1H, 8-CHH),
3.11 (dd, J = 15.4 and 6.3 Hz, 1H, 8-CHH), 3.00 (dd, J = 13.2 and 7.8 Hz, 1H, 2-
CHH), 2.82 (d, J = 13.2 Hz, 1H, 2-CHH), 2.79 (m, 1H), 2.66 (m, 1H), 2.27 (m, 1H),
1.99 (m, 1H), 1.88 (m, 1H). 13C NMR (CDCl3), d: 178.1 (C@O), 138.8, 132.6,
129.1, 128.6, 127.4, 125.5, 61.6 (CH2C6H5), 55.5, 50.6, 43.3, 30.2, 25.3.
13. 3-Benzyl-3,9-diaza-bicyclo[3.3.2]decan-10-one (17) was obtained from 3-
benzyl-3-azabicyclo[3.3.1]nonan-9-one (12) in 40% (3.1 g) yield. Mp 158 °C
(benzene). MS (m/z, CI): 245 (MH+). Anal. Calcd for C15H20N2O: C, 73.74; H,
8.25; N, 11.46. Found: C, 73.52; H, 8.09; N, 11.70. 1H NMR (CDCl3), d: 7.35 (m,
4H, C6H5), 7.27 (m, 1H, 4-CH of C6H5), 7.21 (br d, J = 6.2 Hz, 1H, NH), 3.57 (d,
J = 13.1 Hz, 1H, CHHC6H5), 3.51 (d, J = 13.1 Hz, 1H, CHHC6H5), 3.39 (q, J = 6.6 Hz,
1H, 1-CH), 2.84 (dd, J = 12.4 and 5.0 Hz, 1H), 2.76 (m, 2H), 2.45 (d, J = 11.7 Hz,
1H), 2.37 (d, J = 13.1 Hz, 1H), 2.11 (m, 1H), 1.76–1.97 (m, 4H), 1.52 (m, 1H). 13C
NMR (CDCl3), d: 179.4 (C@O), 138.9 (1-C6H5), 129.0 (CH), 128.4 (CH), 127.2
(CH), 63.6 (CH2), 61.5 (CH2), 55.6 (CH2), 48.5 (CH), 45.7 (CH), 27.9 (CH2), 23.8
(CH), 22.8 (CH).
Boc
N
H
N
1. Boc2O
2. H2, Pd-C
N
NH
Ph
23
25, 68%
Scheme 5.
of compounds 13 and 14 resulted in exclusive formation of amides
1814 (65%) and 1915 (60%), respectively (Scheme 2). This effect ap-
pears to be very sensitive to modification of the bicyclic core, in
particular, compound 20 gives only the usual bicyclic Schmidt
rearrangement product 21 under these reaction conditions
(Scheme 3).16
14. 8-Benzyl-8,10-diaza-bicyclo[4.3.2]undecan-11-one (18) was obtained from 8-
benzyl-8-azabicyclo[4.3.1]decan-10-one (13) in 65% (6.2 g) yield. Mp 126 °C
(benzene). MS (m/z, CI): 259 (MH+). Anal. Calcd for C16H22N2O: C, 74.38; H,
8.58; N, 10.84. Found: C, 74.02; H, 8.85; N, 11.07. 1H NMR (DMSO-d6), d: 7.51
(br d, J = 6.8 Hz, 1H, NH), 7.35 (m, 4H, C6H5), 7.27 (m, 1H, 4-CH of C6H5), 3.49
(m, 2H, CH2C6H5), 3.28 (m, 1H), 2.92 (d, J = 11.9 Hz, 1H), 2.64 (d, J = 11.9 Hz,
1H), 2.51 (m, 1H), 2.25 (d, J = 11.9 Hz, 2H), 2.09 (m, 2H), 1.92 (m, 1H), 1.73 (m,
1H), 1.61 (m, 2H), 1.43 (m, 2H). 13C NMR (CDCl3), d: 180.6 (C@O), 138.8 (1-C of
C6H5), 129.4 (CH), 128.5 (CH), 127.4 (CH), 64.9 (CH2), 62.5 (CH2), 57.7 (CH2),
51.5 (CH), 47.2 (CH), 36.6 (CH2), 33.4 (CH2), 26.1 (CH2), 24.9 (CH2).
15. 9-Benzyl-9,11-diaza-bicyclo[5.3.2]dodecan-12-one 19 was obtained from 9-
benzyl-9-azabicyclo[5.3.1]undecan-11-one 14 in 60% (5.8 g) yield. Mp 180 °C
(benzene). MS (m/z, CI): 273 (MH+). Anal. Calcd for C17H24N2O: C, 74.96; H,
8.88; N, 10.28. Found: C, 75.37; H, 9.13; N, 10.01. 1H NMR (CDCl3), d: 7.34 (m,
4H, C6H5), 7.26 (m, 1H, 4-CH of C6H5), 6.39 (br s, 1H, NH), 3.63 (d, J = 13.1 Hz,
1H, CHHC6H5), 3.57 (d, J = 13.1 Hz, 1H, CHHC6H5), 3.20 (m, 1H), 2.80 (m, 2H),
2.66 (m, 1H), 2.45 (m, 2H), 2.34 (m, 1H), 1.91 (m, 1H), 1.68–1.85 (m, 5H), 1.36
(m, 3H). 13C NMR (CDCl3), d: 179.3 (C@O), 139.2 (1-C of C6H5), 129.1 (CH), 128.5
Compounds 17–19 were reduced with lithium aluminium hy-
dride to afford monoprotected diamine derivatives 22–24 suitable
for further selective modification (Scheme 4).17–19
An ability to obtain orthogonally monoprotected dia-
zabicycloalkane derivatives (i.e., 25) was also demonstrated in
the case of the diamine 8 (Scheme 5).20
In conclusion, an expedient approach to selectively monopro-
tected derivatives of diamines 8–10 (compounds 22–25) which
are of interest for drug design has been developed.
Acknowledgement
The authors are thankful to Olga V. Manoylenko for her invalu-
able help with chromatographic separations.