Communication
ChemComm
P. Fristrup, Chem. – Eur. J., 2009, 15, 9632; (g) B. M. Trost, T. Zhang and
J. D. Sieber, Chem. Sci., 2010, 1, 427; (h) L. Milhau and P. J. Guiry, Top.
Organomet. Chem., 2011, 38, 95.
3 For selected reviews, see: (a) R. Takeuchi and S. Kezuka, Synthesis,
2006, 3349; (b) G. Helmchen, A. Dahnz, P. Du¨bon, M. Schelwies and
R. Weihofen, Chem. Commun., 2007, 675; (c) J. F. Hartwig and
L. M. Stanley, Acc. Chem. Res., 2010, 43, 1461; (d) J. F. Hartwig and
M. J. Pouy, Top. Organomet. Chem., 2011, 34, 169; (e) W.-B. Liu,
J.-B. Xia and S.-L. You, Top. Organomet. Chem., 2011, 38, 155;
( f ) P. Tosatti, A. Nelson and S. P. Marsden, Org. Biomol. Chem.,
2012, 10, 3147; (g) C.-X. Zhuo, C. Zheng and S.-L. You, Acc. Chem.
Res., 2014, 47, 2558; (h) J. C. Hethcox, S. E. Shockley and B. M. Stoltz,
ACS Catal., 2016, 6, 6207; (i) J. Qu and G. Helmchen, Acc. Chem. Res.,
2017, 50, 2539.
4 For the first application of Feringa ligand in Ir-catalyzed AAA reaction, see
(a) T. Ohmura and J. F. Hartwig, J. Am. Chem. Soc., 2002, 124, 15164. For a
review, see; (b) J. F. Teichert and B. L. Feringa, Angew. Chem., Int. Ed.,
2010, 49, 2486.
5 For selected examples, see (a) K. Tissot-Croset, D. Polet and A. Alexakis,
Angew. Chem., Int. Ed., 2004, 43, 2426; (b) D. Polet and A. Alexakis, Org.
Lett., 2005, 7, 1621; (c) D. Polet, A. Alexakis, K. Tissot-Croset,
C. Corminboeuf and K. Ditrich, Chem. – Eur. J., 2006, 12, 3596.
6 For selected examples, see (a) C. Defieber, H. Gru¨tzmacher and
E. M. Carreira, Angew. Chem., Int. Ed., 2008, 47, 4482;
(b) M. Lafrance, M. Roggen and E. M. Carreira, Angew. Chem., Int.
Scheme 4 Synthetic transformations.
to be tolerant of the olefin metathesis reaction, affording 13 in
91% ee with 57% yield. The spirocyclic product 14 was prepared
through an intramolecular Heck reaction of the adduct bearing
an iodo group at the ortho position on the phenyl ring of R2.
In conclusion, we have developed an enantioselective and
regioselective a-alkylation of azlactones. The reaction proceeds
via a pathway in which aza-Cope rearrangement is the terminal
reaction, occurring after the asymmetric allylic alkylation by
iridium catalysis. The reaction provides an entry to a wide range of
enantio-enriched allylated 2,4-diaryloxazol-5(2H)-ones in excellent
yields with high enantioselectivities. Moreover, a number of trans-
formations were carried out for the products to value this method
for the rapid generation of highly functionalized chiral building
blocks. Further studies on the application of this strategy in natural
product synthesis are currently in progress in our laboratory.
We gratefully acknowledge the Natural Science Foundation
of Jiangsu Province (BK20180447) and the Fundamental Research
Funds for the Central Universities (30918011313) for financial
support. We thank M.-F. Lv for assistance with the X-ray crystal-
lographic collection and analysis. We thank Prof. H.-M. Wu
from Nanjing Technology University for helpful discussions.
¨
Ed., 2012, 51, 3470; (c) S. L. Rossler, S. Krautwald and E. M. Carreira,
J. Am. Chem. Soc., 2017, 139, 3603.
7 For Select examples in Ir-catalyzed AAA reactions using other
ligands, see (a) D. Enders and U. Kallfass, Angew. Chem., Int. Ed.,
2002, 41, 1743; (b) Y. Li, Z. Feng and S.-L. You, Chem. Commun.,
2008, 2263; (c) C.-C. Bao, D.-S. Zheng, X. Zhang and S.-L. You,
Organometallics, 2018, 37, 4763; (d) T. P. Montgomery, A. Hassan,
B. Y. Park and M. J. Krische, J. Am. Chem. Soc., 2012, 134, 11100.
8 For reviews on azactone chemistry, (a) A.-N. R. Alba and R. Rios,
Chem. – Asian J., 2011, 6, 720; (b) P. P. de Castro, A. G. Carpanez and
G. W. Amarante, Chem. – Eur. J., 2016, 22, 10294; (c) J. S. Fisk,
R. A. Mosey and J. J. Tepe, Chem. Soc. Rev., 2007, 36, 1432.
9 H. Zhou, H. Yang, M. Liu, C. Xia and G. Jiang, Org. Lett., 2014,
16, 5350.
10 J. Kuang, S. Parveen and B. Breit, Angew. Chem., Int. Ed., 2017,
56, 8422.
11 For selective recent examples on tandem allylic alkylation/Cope
rearrangement, see: (a) A. Padwa, M. Akiba, L. A. Cohen and J. G.
MacDonald, J. Org. Chem., 1983, 48, 695; (b) M. Bos and E. Riguet, Chem.
¨
Commun., 2017, 53, 4997; (c) S. Rieckhoff, J. Meisner, J. Kastner, W. Frey
and R. Peters, Angew. Chem., Int. Ed., 2018, 57, 1404; (d) M. Kawatsura,
H. Tsuji, K. Uchida and T. Itoh, Tetrahedron, 2011, 67, 7686; (e) J. Liu,
C.-G. Cao, H.-B. Sun, X. Zhang and D. Niu, J. Am. Chem. Soc., 2016,
138, 13103; ( f ) W.-B. Liu, N. Okamoto, E. J. Alexy, A. Y. Hong, K. Tran and
B. M. Stoltz, J. Am. Chem. Soc., 2016, 138, 5234; (g) M. Zhan, X. Pu, B. He,
D. Niu and X. Zhang, Org. Lett., 2018, 20, 5857; (h) E. Fereyduni,
J. N. Sanders, G. Gonzalez, K. N. Houk and A. J. Grenning, Chem. Sci.,
2018, 9, 8760.
Conflicts of interest
12 (a) C. Welter, O. Koch, G. Lipowsky and G. Helmchen, Chem.
Commun., 2004, 896; (b) W.-B. Liu, C. Zheng, C.-X. Zhuo, L.-X. Dai
and S.-L. You, J. Am. Chem. Soc., 2012, 134, 4812; (c) C. Shu,
A. Leitner and J. F. Hartwig, Angew. Chem., Int. Ed., 2004, 43, 4797;
(d) W.-B. Liu, C. M. Reeves, S. C. Virgil and B. M. Stoltz, J. Am. Chem.
Soc., 2013, 135, 10626; (e) X.-D. Bai, J. Wang and Y. He, Adv. Synth.
Catal., 2019, 361, 496.
There are no conflicts to declare.
Notes and references
1 For selected reviews, see: (a) B. M. Trost and D. L. Van Vranken, Chem.
Rev., 1996, 96, 395; (b) B. M. Trost and M. L. Crawley, Chem. Rev., 2003,
103, 2921; (c) Z. Lu and S. Ma, Angew. Chem., Int. Ed., 2008, 47, 258;
(d) J. D. Weaver, A. Recio III, A. J. Grenning and J. A. Tunge, Chem. Rev.,
2011, 111, 1846; (e) N. A. Butt and W. Zhang, Chem. Soc. Rev., 2015,
44, 7929; ( f ) Q. Cheng, H.-F. Tu, C. Zheng, J.-P. Qu, G. Helmchen and
S.-L. You, Chem. Rev., 2019, 119, 1855.
2 (a) G. J. Helmchen, J. Organomet. Chem., 1999, 576, 203; (b) A. Tenaglia
and A. Heumann, Angew. Chem., Int. Ed., 1999, 38, 2180; (c) B. M. Trost,
Chem. Pharm. Bull., 2002, 50, 1; (d) U. Kazmaier, Curr. Org. Chem., 2003,
7, 317; (e) B. M. Trost, J. Org. Chem., 2004, 69, 5813; ( f ) T. Jensen and
13 The branched C2 product was obtained when the R2 group was alkyl
group. See: W. Chen and J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 2068.
14 CCDC 1887161†.
15 (a) M. Lukowski, K. Jacobs, P. Hsueh, H. A. Lindsay and M. C. Milletti,
Tetrahedron, 2009, 65, 10311; (b) L. E. Overman, L. T. Mendelson and
E. J. Jacobsen, J. Am. Chem. Soc., 1983, 105, 6629; (c) R. J. Doedens,
G. P. Meier and L. E. Overman, J. Org. Chem., 1988, 53, 685.
16 The boatlike transition states (less favorable) for the diastereoi-
somers of 4 and 5 were not shown, which could also generate the
ent-E-3a and E-3a, respectively.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019