C O M M U N I C A T I O N S
donating groups at the 2-position were tolerated very well (6b-d),
with isolated yields above 90% in each case. Also, aldehydes containing
different halogen substituents or a trifluoromethyl group afforded the
corresponding chromanones (6e-h) in good yields. Finally, a sub-
stituent on the progargylic moiety was also well-tolerated, giving the
product in 70% yield with a 3:1 trans/cis ratio.
In addition, we also examined the variation of substituents on
aldehyde 5 (Table 3). Benzaldehyde and other aromatic aldehydes
bearing substituents in the 2- or 3-position afforded the chromanones
in good yields (6l-q). In what can be seen as an intramolecular
competition experiment, the 2-allyloxy-substituted substrate (entry 4)
was transformed into 6o in 65% yield, demonstrating the preferential
attack of the acyl anion equivalent on the triple bond over the one on
the double bond in the hydroacylation step. Moreover, various electron-
donating and -withdrawing groups in the 4-position of the ring were
well-tolerated (6r-u). Gratifyingly, heterocyclic and aliphatic alde-
hydes also provided good yields of the desired products (6w-x),
significantly expanding the scope of this novel cascade reaction.
Supporting Information Available: Experimental and characteriza-
tion details. This material is available free of charge via the Internet at
References
(1) For an excellent review, see: Willis, M. C. Chem. ReV. 2010, 110, 725.
(2) (a) Stetter, H.; Schreckenberg, M. Angew. Chem., Int. Ed. Engl. 1973, 12,
81. (b) Stetter, H.; Kuhlmann, H. Angew. Chem., Int. Ed. Engl. 1974, 13,
539.
(3) For reviews of NHC organocatalysis, see: (a) Nair, V.; Vellalath, S.; Babu,
B. P. Chem. Soc. ReV. 2008, 37, 2691. (b) Enders, D.; Niemeier, O.;
Henseler, A. Chem. ReV. 2007, 107, 5606. (c) Marion, N.; D´ıez-Gonza´lez,
S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (d) Phillips, E. M.;
Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009, 42, 55.
(4) (a) He, J.; Tang, S.; Liu, J.; Su, Y.; Pan, X.; She, X. Tetrahedron 2008,
64, 8797. For hydroacylation of nitriles, see: (b) Vedachalam, S.; Zeng, J.;
Gorityala, B. K.; Antonio, M.; Liu, X.-W. Org. Lett. 2010, 12, 352.
(5) Hirano, K.; Biju, A. T.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131,
14190.
(6) For selected papers, see: (a) Jun, C.-H.; Lee, H.; Hong, J.-B.; Kwon, B.-I.
Angew. Chem., Int. Ed. 2002, 41, 2146. (b) Tanaka, K.; Fu, G. C. J. Am.
Chem. Soc. 2001, 123, 11492. (c) Tsuda, T.; Kiyoi, T.; Saegusa, T. J. Org.
Chem. 1990, 55, 2554. For a related gold-catalyzed hydroacylation, see:
(d) Skouta, R.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 1117.
(7) (a) Lebeuf, R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243. (b) Hirano,
K.; Piel, I.; Glorius, F. AdV. Synth. Catal. 2008, 350, 984.
Table 3. Variation of the Coupling Aldehyde 5a
(8) See the Supporting Information for details.
(9) For a mechanistic discussion of related processes, see: (a) Roveda, J.-G.;
Clavette, C.; Hunt, A. D.; Gorelsky, S. I.; Whipp, C. J.; Beauchemin, A. M.
J. Am. Chem. Soc. 2009, 131, 8740. (b) Moran, J.; Gorelsky, S. I.;
Dimitrijevic, E.; Lebrun, M.-E.; Be´dard, A.-C.; Se´guin, C.; Beauchemin,
A. M. J. Am. Chem. Soc. 2008, 130, 17893.
(10) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719.
entry
R
product
yield (%)
(11) For reviews, see: (a) MacMillan, D. W. C.; Walji, A. M. Synlett 2007,
1477. (b) Chapman, C. J.; Frost, C. G. Synthesis 2007, 1. (c) Wasilke,
J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. ReV. 2005, 105, 1001.
(d) Ajamian, A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43, 3754. (e)
Bruggink, A.; Schoevaart, R.; Kieboom, T. Org. Process Res. DeV. 2003,
7, 622.
1
2
3
4
5
6
7
8
9
10
11
12
13
phenyl
6l
90
66
67
65
82
85
93
90
88
77
86
85
68
2-chlorophenyl
2-methylphenyl
2-allyloxyphenyl
3-bromophenyl
3-methoxyphenyl
4-bromophenyl
4-methylphenyl
4-methoxyphenyl
4-carbomethoxyphenyl
1-naphthyl
6m
6n
6o
6p
6q
6r
6s
(12) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed.
2006, 45, 7134.
(13) For reviews, see: (a) Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
(b) Enders, D.; Grondal, C.; Hu¨ttl, M. R. M. Angew. Chem., Int. Ed. 2007,
46, 1570. For selected examples, see: (c) Jiang, H.; Elsner, P.; Jensen, K. L.;
Falcicchio, A.; Marcos, V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2009,
48, 6844. (d) Simmons, B.; Walji, A. M.; MacMillan, D. W. C. Angew.
Chem., Int. Ed. 2009, 48, 4349. (e) Ishikawa, H.; Suzuki, T.; Hayashi, Y.
Angew. Chem., Int. Ed. 2009, 48, 1304. (f) Wang, J.; Li, H.; Xie, H.-X.;
Zu, L.-S.; Shen, X.; Wang, W. Angew. Chem., Int. Ed. 2007, 46, 9050. (g)
Enders, D.; Hu¨ttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441,
861.
(14) For selected examples of benzoin reactions, see: (a) Enders, D.; Kallfass,
U. Angew. Chem., Int. Ed. 2002, 41, 1743. (b) Enders, D.; Niemeier, O.;
Balensiefer, T. Angew. Chem., Int. Ed. 2006, 45, 1463. (c) Takikawa, H.;
Hachisu, Y.; Bode, J. W.; Suzuki, K. Angew. Chem., Int. Ed. 2006, 45,
3492. (d) White, M. J.; Leeper, F. J. J. Org. Chem. 2001, 66, 5124. For
reviews of the Stetter reaction, see: (e) Read de Alaniz, J.; Rovis, T. Synlett
2009, 1189. (f) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632.
Also see: (g) Read de Alaniz, J.; Kerr, M. S.; Moore, J. L.; Rovis, T. J.
Org. Chem. 2008, 73, 2033. (h) Enders, D.; Breuer, K.; Runsink, J. HelV.
Chim. Acta 1996, 79, 1899. For selected work in homoenolate chemistry,
see: (i) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(j) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (k) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131. (l) Nair, V.;
Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736.
(m) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418.
(n) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. (o) Phillips,
E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416.
(15) For the application of NHCs in cascade catalysis, see: (a) Lathrop, S. P.;
Rovis, T. J. Am. Chem. Soc. 2009, 131, 13628. (b) Ye, W.; Cai, G.; Zhuang,
Z.; Jia, X.; Zhai, H. Org. Lett. 2005, 7, 3769. (c) Stetter, H.; Kuhlmann,
H. Org. React. 1991, 40, 407.
6t
6u
6v
6w
6x
2-furyl
isopropyl
a General conditions: 4b (1.0 mmol), 5 (1.0 mmol), 3 (5 mol %), K2CO3
(10 mol %), THF (2.0 mL), 70 °C, 2 h. Isolated yields are given.
This novel methodology was applied to the one-pot synthesis of
benzopyranopyrrole derivative 7 by generation of the chromanone
derivative through a hydroacylation-Stetter reaction cascade followed
by condensation with p-toluidine (eq 3):
In conclusion, we have developed an NHC-organocatalyzed hy-
droacylation of unactivated alkynes to provide R,ꢀ-unsaturated ketone
products.17 In addition, we have also reported a rare case of an efficient
and selective dually NHC-catalyzed cascade reaction involving the
hydroacylation of alkynes and a subsequent intermolecular Stetter
reaction.
(16) Treatment of 4a with the carbene generated from 3 resulted in the formation
of chromanone 4a′ in 86% yield, presumably by the addition of second
molecule of 4a to the intermediate enone. For a related report, see: Stetter,
H.; Bender, H.-J. Angew. Chem., Int. Ed. Engl. 1978, 17, 131.
Acknowledgment. Financial support by the Deutsche Fors-
chungsgemeinschaft (SPP 1179), the Alexander von Humboldt Foun-
dation (A.T.B.), and the Deutsche Telekom Stiftung (N.E.W.) is
gratefully acknowledged. The research of F.G. was supported by the
Alfried Krupp Prize for Young University Teachers of the Alfried
Krupp von Bohlen und Halbach Foundation. We also thank Marwin
Segler for assistance.
(17) For the addition of aldehydes to activated alkynes using stoichiometric
amounts of NHC, see: (a) Ma, C.; Yang, Y. Org. Lett. 2005, 7, 1343. (b)
Ma, C.; Ding, H.; Wu, G.; Yang, Y. J. Org. Chem. 2005, 70, 8919.
JA102130S
9
J. AM. CHEM. SOC. VOL. 132, NO. 17, 2010 5971