Journal of the American Chemical Society
Page 12 of 15
5) For selected examples of water tolerant organometallic
9) (a) Kolbe, H. Zersetzung der Valeriansäure durch den
reagents, see: (a) Tomohiro, F.; Sandra, L.; Norikazu, M.; Makoto,
W., Water Accelerated Allylation of Aldehydes by Using Water
Tolerant Grignard-Type Allylating Agents from Allylmagnesium
Chloride and Various Metallic Salts. Chem. Lett. 2002, 31, 376-377.
(b) Cicco, L.; Sblendorio, S.; Mansueto, R.; Perna, F. M.; Salomone,
A.; Florio, S.; Capriati, V., Water opens the door to organolithiums
and Grignard reagents: exploring and comparing the reactivity of
highly polar organometallic compounds in unconventional
reaction media towards the synthesis of tetrahydrofurans. Chem.
Sci. 2016, 7, 1192-1199. (c) Zhou, F.; Li, C.-J. The Barbier–Grignard-
type arylation of aldehydes using unactivated aryl iodides in
water. Nat. Commun. 2014, 5, 4254.
elektrischen Strom. Ann. Chem. Pharm. 1848, 64, 339–341. For an
application in total synthesis, see: (b) Corey, E. J.; Sauers, R. R. The
Synthesis of Pentacyclosqualene (8,8'-Cycloönocerene) and the α-
and β-Onoceradienes. J. Am. Chem. Soc. 1959, 81, 1739-1743. (c)
Barton, D. H. R.; Zard, S. Z. Invention of New Reactions Useful in
the Chemistry of Natural Products. Pure Appl. Chem. 1986, 58,
675-684.
10) (a) Pitre, S. P.; Weires, N. A.; Overman, L. E., Forging C(sp3)–
C(sp3) Bonds with Carbon-Centered Radicals in the Synthesis of
Complex Molecules. J. Am. Chem. Soc. 2019, 141, 2800-2813. (b)
Smith, J. M.; Harwood, S. J.; Baran, P. S. Radical Retrosynthesis.
Acc. Chem. Res. 2018, 51, 1807-1817. (c) Yan, M.; Lo, J. C.; Edwards,
J. T.; Baran, P. S., Radicals: Reactive Intermediates with
Translational Potential. J. Am. Chem. Soc. 2016, 138, 12692-12714.
11) For seminal studies on the use of RAEs, see: (a) Okada, K.;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6) For reviews and selected examples, see: (a) Liu, R. Y.; Zhou, Y.;
Yang, Y.; Buchwald, S. L. Enantioselective Allylation Using Allene,
a Petroleum Cracking Byproduct. J. Am. Chem. Soc. 2019, 141, 2251-
2256. (b) Yang, Y.; Perry, I. B.; Buchwald, S. L. Copper-Catalyzed
Enantioselective Addition of Styrene-Derived Nucleophiles to
Imines Enabled by Ligand-Controlled Chemoselective
Hydrocupration. J. Am. Chem. Soc. 2016, 138, 9787-9790. (c)
Wang, Y.-M.; Bruno, N. C.; Placeres, Á. L.; Zhu, S.; Buchwald, S. L.
Enantioselective Synthesis of Carbo- and Heterocycles through a
CuH-Catalyzed Hydroalkylation Approach. J. Am. Chem. Soc.
2015, 137, 10524-10527. (d) Zhou, Y.; Bandar, J. S.; Buchwald, S. L.
Enantioselective CuH-Catalyzed Hydroacylation Employing
Unsaturated Carboxylic Acids as Aldehyde Surrogates. J. Am.
Chem. Soc. 2017, 139, 8126-8129. (e) Obora, Y.; Hatanaka, S.; Ishii,
Y. Iridium-Catalyzed Coupling Reaction of Primary Alcohols with
1-Aryl-1-propynes Leading to Secondary Homoallylic Alcohols.
Org. Lett. 2009, 11, 3510-3513. (f) Bower, J. F.; Kim, I. S.; Patman, R.
L.; Krische, M. J. Catalytic Carbonyl Addition through Transfer
Hydrogenation: A Departure from Preformed Organometallic
Reagents. Angew. Chem. Int. Ed. 2008, 48, 34-46. (g) Kokubo, K.;
Miura, M.; Nomura, M. Rhodium-Catalyzed Reaction of Benzoic
Anhydride with Styrene under Molecular Hydrogen.
Organometallics 1995, 14, 4521-4524. (h) Kim, S. W.; Zhang, W.;
Krische, M. J. Catalytic Enantioselective Carbonyl Allylation and
Propargylation via Alcohol-Mediated Hydrogen Transfer:
Merging the Chemistry of Grignard and Sabatier. Acc. Chem. Res.
2017, 50, 2371-2380. (i) Nguyen, K. D.; Park, B. Y.; Luong, T.; Sato,
H.; Garza, V. J.; Krische, M. J. Metal-catalyzed reductive coupling
of olefin-derived nucleophiles: Reinventing carbonyl addition.
Science 2016, 354, aah5133. (j) Deutsch, C.; Krause, N.; Lipshutz, B.
H. CuH-Catalyzed Reactions. Chem. Rev. 2008, 108, 2916-2927. (k)
Mohr, J.; Oestreich, M. Balancing C=C Functionalization and C=O
Reduction in Cu−H Catalysis. Angew. Chem. Int. Ed. 2016, 55,
12148-12149.
Okamoto, K.; Oda, M.
A New and Practical Method of
Decarboxylation: Photosensitized Decarboxylation of N-
Acyloxyphthalimides via Electron-Transfer Mechanism. J. Am.
Chem. Soc. 1988, 110, 8736-8738. (b) Okada, K.; Okamoto, K.;
Morita, N.; Okubo, K.; Oda, M. Photosensitized Decarboxylative
Michael Addition Through N-(Acyloxy)phthalimides via an
Electron-Transfer Mechanism. J. Am. Chem. Soc. 1991, 113, 9401-
9402. For recent investigations, see: (c) Cornella, J.; Edwards, J. T.;
Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.;
Schmidt, M.; Eastgate, M. D.; Baran, P. S. Practical Ni-Catalyzed
Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters. J.
Am. Chem. Soc. 2016, 138, 2174-2177. (d) Qin, T.; Cornella, J.; Li, C.;
Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.;
Eastgate, M. D.; Baran, P. S. A General Alkyl-Alkyl Cross-Coupling
Enabled by Redox-Active Esters and Alkylzinc Reagents. Science
2016, 352, 801-805. (e) Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.;
Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S.
Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with
Boronic Acids. Angew. Chem. Int. Ed. 2016, 55, 9676-9679. (f)
Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.;
Creech, G.; Baran, P. S. Redox-Active Esters in Fe-Catalyzed C–C
Coupling. J. Am. Chem. Soc. 2016, 138, 11132-11135. (g) Qin, T.;
Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.;
Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran,
P. S. Nickel-Catalyzed Barton Decarboxylation and Giese
Reactions: A Practical Take on Classic Transforms. Angew. Chem.
Int. Ed. 2017, 56, 260-265. (h) Sandfort, F.; O’Neill, M. J.; Cornella,
J.; Wimmer, L.; Baran, P. S. Alkyl−(Hetero)aryl Bond Formation
via Decarboxylative Cross-Coupling:
A Systematic Analysis.
Angew. Chem. Int. Ed. 2017, 56, 3319-3323. (i) Edwards, J. T.;
Merchant, R. R.; McClymont, K. S.; Knouse, K. W.; Qin, T.; Malins,
L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-L.; Zhou, T.;
Eastgate, M. D.; Baran, P. S. Decarboxylative Alkenylation. Nature
2017, 545, 213-218. (j) Smith, J. M.; Qin, T.; Merchant, R. R.;
Edwards, J. T.; Malins, L. R.; Liu, Z.; Che, G.; Shen, Z.; Shaw, S. A.;
Eastgate, M. D.; Baran, P. S. Decarboxylative Alkynylation. Angew.
Chem. Int. Ed. 2017, 56, 11906-11910. (k) Wang, J.; Lundberg, H.;
Asai, S.; Martin-Acosta, P.; Chen, J. C.; Brown, S.; Farrell, W.;
Dushin, R.; O’Donnell, C. J.; Ratnayake, A. S.; Richardson, P.; Liu,
Z.; Qin, T.; Blackmond, D. G.; Baran, P. S. Kinetically Guided
Radical-Based Synthesis of C(sp3)−C(sp3) Linkages on DNA. Proc.
Natl. Acad. Sci. U. S. A. 2018, 115, E6404-E6410. (l) Chen, T.-G.;
Barton, L. M.; Lin, Y.; Tsien, J.; Kossler, D.; Bastida, I.; Asai, S.; Bi,
C.; Chen, J. S.; Shan, M.; Fang, H.; Fang, F. G.; Choi, H.; Hawkins,
L.; Qin, T.; Baran, P. S. Building C(sp3)-Rich Complexity by
Combining Cycloaddition and C-C Cross-Coupling Reactions.
Nature 2018, 560, 350-354. (m) Wang, J; Shang, M.; Lundberg, H.;
Feu, K. S.; Hecker, S. J.; Qin, T.; Blackmond, D. G.; Baran, P. S. Cu-
7) (a) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R.
A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of
Olefins. Chemical Reviews 2016, 116, 8912-9000. (b) Green, S. A.;
Crossley, S. W. M.; Matos, J. L. M.; Vásquez-Céspedes, S.; Shevick,
S. L.; Shenvi, R. A. The High Chemofidelity of Metal-Catalyzed
Hydrogen Atom Transfer. Acc. Chem. Res. 2018, 51 (11), 2628-2640.
(c) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.;
Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.;
Baran, P. S. Fe-Catalyzed C–C Bond Construction from Olefins via
Radicals. J. Am. Chem. Soc. 2017, 139, 2484-2503. (d) Shevick, S. L.;
Obradors, C.; Shenvi, R. A. Mechanistic Interrogation of Co/Ni-
Dual Catalyzed Hydroarylation. J. Am. Chem. Soc. 2018, 140,
12056-12068.
8) Gooßen, L. J.; Rodríguez, N.; Gooßen, K. Carboxylic Acids as
Substrates in Homogeneous Catalysis. Angew. Chem., Int. Ed.
2008, 47, 3100-3120.
12
ACS Paragon Plus Environment