highly diverse derivatives of the pyrrole-3-carboxylic acid
scaffold.
Our investigations initially focused on the direct synthesis
of pyrroles from commercially available ethyl acetoacetate
(2.2 equiv), benzylamine (1.0 equiv), and R-bromoacetophe-
none (1.0 equiv). A variety of bases such as N,N-diisopro-
pylethylamine (DIPEA), triethylamine, 2,6-lutidine, pyridine,
and 2,6-di-tert-butylpyridine were screened at different
temperatures using a single microreactor. It was found that
the use of DIPEA (1.0 equiv) in dimethylformamide (DMF)
at 200 °C was most efficient for this process. A solution of
ethyl acetoacetate/benzylamine/DIPEA (2.2:1:1, 0.5 M,
DMF) and R-bromoacetophenone (1.0 equiv, 0.5 M, DMF)
was introduced into a preheated microreactor at 200 °C and
5.0 bar (Table 1). Analysis of the reactions by LC-MS
showed that the conversion of R-bromoacetophenone to the
The pyrrole framework is a ubiquitous structural motif
found in a wide range of biologically active natural products
and pharmaceutically active agents.3 Members of this
important class of heterocyclic compounds display a variety
of pharmacological properties including antibacterial, anti-
viral, anti-inflammatory, anticancer, and antioxidant activity.4
A prime example is atorvastatin calcium (Lipitor), the
world’s leading cholesterol-lowering drug.5 Consequently,
there is significant interest in the development of efficient
methods for the synthesis of pyrrole derivatives bearing
diverse substitution patterns. There are several classical
methods for the synthesis of pyrroles, including the
Hantzsch,6 Paal-Knorr,7 and Knorr, in addition to a variety
of cycloadditions8 and transition-metal-catalyzed cyclization
reactions.9 Although these methods have proven effective
for the preparation of pyrrole derivatives, they involve
multistep in-flask (batch) syntheses that limit scope and
efficiency, especially with respect to analogue library syn-
thesis.
Table 1. Scope of ꢀ-Ketoesters
The Hantzsch pyrrole synthesis involves the reaction of
ꢀ-ketoesters with ammonia (or primary amines) and
R-haloketones.6a Although the Hantzsch method produces
N-substituted pyrroles, the yields are often low, and this may
be why the procedure has been somewhat under utilized
historically.6c,10a Furthermore, the “one-pot” synthesis of
pyrrole-3-carboxylic acids has not been reported, and thus
stepwise, in-flask (batch) protocols are necessary.10b Herein,
we describe the first direct continuous flow synthesis of
pyrrole-3-carboxylic acids. In addition, we have applied the
method to the synthesis of pyrrole-3-carboxamide derivatives
in an uninterrupted sequence.
entry
R1
yield (%)a
1
2
3
4
Me
Et
Bn
tBu
82
81
78
76
a Isolated yield based on benzylamine after purification of the crude
reaction mixture.
(3) (a) Boger, D. L.; Boyce, C. W.; Labrili, M. A.; Sehon, C. A.; Jin,
Q. J. Am. Chem. Soc. 1999, 121, 54. (b) Groenendaal, L.; Meijer, E.-W.;
Vekemans, J. A. J. M. Electronic Materials: The Oligomer Approach;
Mu¨llen, K.,; Wegner, G., Eds.; WILEY-VCH: Weinheim, 1997. (c)
Domingo, V. M.; Aleman, C.; Brillas, E.; Julia, L. J. Org. Chem. 2001, 66,
4058. (d) Loya, S.; Rudi, A.; Kashman, Y.; Hizi, A. Biochem. J. 1999,
344, 85.
corresponding pyrrole derivatives was complete within 8 min.
This reaction tolerated a variety of ꢀ-ketoesters including
ethyl, benzyl, methyl, and tert-butyl acetoacetates (Table 1).
tert-Butyl esters are versatile protecting groups for car-
boxylic acids which are stable under basic conditions but
can be removed using acid.11 Typically strong protic acids,
such as HCl, H2SO4, HNO3, or TFA, are employed for tert-
butyl ester hydrolysis in aqueous or organic solvents.12
During the Hantzsch pyrrole synthesis, HBr is generated as
a side product, and in our procedure DIPEA is used as a
neutralizing agent. We hypothesized that we could take
advantage of the strong acid generated in the Hantzsch
reaction to hydrolyze the tert-butyl ester formed in the initial
product. With this in mind, we varied the reaction conditions
(4) (a) Jacobi, P. A.; Coutts, L. D.; Guo, J.; Hauck, S. I.; Leung, S. H.
J. Org. Chem. 2000, 65, 205. (b) Martinez, G. R.; Hirschfeld, D. R.;
Maloney, P. J.; Yang, D. S.; Rosenkranz, R. P.; Walker, K. A. M. J. Med.
Chem. 1989, 32, 890. (c) Khanna, I. K.; Weier, R. M.; Yu, Y.; Collins,
P. W.; Miyashiro, J. M.; Koboldt, C. M.; Veenhuizen, A. W.; Currie, J. L.;
Seibert, K.; Isakson, P. C. J. Med. Chem. 1997, 40, 1619.
(5) Thompson, R. B. FASEB J. 2001, 15, 1671.
(6) (a) Hantzsch, A. Ber. 1890, 23, 1474. (b) Trautwein, A. W.;
Sussmuth, R. D.; Jung, G. Bioorg. Med. Chem. Lett. 1998, 8, 2381. (c)
Roomi, M. W.; MacDonald, S. F. Can. J. Chem. 1970, 48, 1689. (d)
Palacios, F.; Aparico, D.; Santos, J. M.; Vicario, J. Tetrahedron 2001, 57,
1961.
(7) (a) Chen, J. X.; Wu, H. Y.; Zheng, Z. G.; Jin, C.; Zhang, X. X.; Su,
W. K. Tetrahedron Lett. 2006, 47, 5383. (b) Trost, B. M.; Doherty, G. A.
J. Am. Chem. Soc. 2000, 122, 3801. (c) Quiclet-Sire, B.; Quintero, L.;
Sanchez-Jimenez, G.; Zard, S. Z. Synlett 2003, 75. (d) Tracey, M. R.; Hsung,
R. P.; Lambeth, R. H. Synthesis 2004, 918. (e) Knorr, L. Chem. Ber. 1885,
18, 299. (f) Paal, C. Chem. Ber. 1885, 18, 367.
(10) (a) Agosta, W. C. J. Org. Chem. 1961, 26, 1724. (b) LoVerme, J.;
Duranti, A.; Tontini, A.; Spadoni, G.; Mor, M.; Rivara, S.; Stella, N.; Xu,
C.; Tarzia, G.; Piomelli, D. Bioorg. Med. Chem. Lett. 2009, 19, 639.
(11) (a) Greene, T. W.; Wuts, P. G. M. ProtectiVe Groups in Organic
Synthesis; John Wiley and Sons: New York, 1999. (b) Kocienski, P. G. P. J.
Protecting Groups: Thieme: Stuttgart, 1994.
(8) (a) Katritzky, A. R.; Zhang, S.; Wang, M.; Kolb, H. C.; Steel, P. J.
J. Heterocycl. Chem. 2002, 39, 759. (b) Bullington, J. L.; Wolff, R. R.;
Jackson, P. F. J. Org. Chem. 2002, 67, 9439. (c) Washizuka, K. I.; Minakata,
S.; Ryu, I.; Komatsu, M. Tetrahedron 1999, 55, 12969. (d) Kim, Y.; Kim,
J.; Park, S. B. Org. Lett. 2009, 11, 17.
(12) (a) Strazzolini, P.; Misuri, N.; Polese, P. Tetrahedron Lett. 2005,
46, 2075. (b) Strazzolini, P.; Scuccato, M.; Giumanini, A. G. Tetrahedron
2000, 56, 3625. (c) Strazzolini, P.; Melloni, T.; Giumanini, A. G.
Tetrahedron 2001, 57, 9033. (d) Lin, L. S.; Lanza Jr., T.; de Laszlo, S. E.;
Truong, Q.; Kamenecka, T.; Hagmann, W. K. Tetrahedron Lett. 2000, 41,
7013. (e) Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. J. Org. Chem. 1994,
59, 3216.
(9) (a) Egi, M.; Azechi, K.; Akai, S. Org. Lett. 2009, 11, 5002. (b) Kel’in,
A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.
(c) Gabriele, B.; Salerno, G.; Fazio, A. J. Org. Chem. 2003, 68, 7853. (d)
Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
(e) Rivero, M. R.; Buchwald, S. L. Org. Lett. 2007, 9, 973.
Org. Lett., Vol. 12, No. 22, 2010
5183