L. Bollans et al. / Tetrahedron Letters 51 (2010) 2160–2163
2163
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Wichterle, O. Collect. Czech. Chem. Commun. 1947, 12, 292.
2. Boger, D. L.; Patel, M.; Takusagawa, F. J. Org. Chem. 1985, 50, 1911–1916.
3. (a) Baldwin, J. E.; Aldous, D. J.; Chan, C.; Harwood, L. M.; O’Neil, I. A.; Peach, J. M.
Synlett 1989, 9–14; (b) Kawabata, T.; Itoh, K.; Hiyama, T. Tetrahedron Lett. 1989,
30, 4837–4840; (c) Joubert, M.; Defoin, A.; Tarnus, C.; Streith, J. Synlett 2000,
1366–1368.
4. Leach, A. G.; Houk, K. N. J. Org. Chem. 2001, 66, 5192–5200.
5. Bollans, L.; Bacsa, J.; Iggo, J. A.; Morris, G. A.; Stachulski, A. V. Org. Biomol. Chem.
2009, 7, 4531–4538.
6. Wang, C. G.; Luosujarvi, H.; Heikkinen, J.; Ristell, M.; Uitto, L.; Myllyla, R. Matrix
Biol. 2002, 21, 559–566.
7. (a) Taylor, M. R.; Drickamer, K. Introduction to Glycobiology; Oxford University
Press, 2003; (b) Krane, S. M.; Kantrowitz, F. G.; Byrne, M.; Pinnell, S. R.; Singer,
F. R. J. Clin. Invest. 1977, 59, 819.
8. Bollans, L. Ph. D. Thesis, University of Liverpool, 2009.
9. Davies, G.; Russell, A. T.; Sanderson, A. J.; Simpson, S. J. Tetrahedron Lett. 1999,
40, 4391–4394.
Figure 2. Single crystal X-ray structure of ANDA adduct 23 showing the noticeable
intermolecular H bond (CCDC 725212).
10. Sparks, S. M.; Chow, C. P.; Zhu, L.; Shea, K. J. J. Org. Chem. 2004, 69, 3025–3035.
11. Calvet, G.; Blanchard, N.; Kouklovsky, C. Synthesis 2005, 3346–3354.
12. For the use of catalytic benzoic acid in the Wittig reaction with the stabilised
phosphorane, see: Ruchardt, C. Angew. Chem., Int. Ed. Engl. 1963, 2, 619.
13. De Luca, L.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041–3043.
Scheme 4, 18b?19). We believe a more appropriate protecting
group could solve this issue (and retain the extra functionality)
as the sorbate-derived ANDA adduct 25 was smoothly reduced to
268 (80%), and Keck et al. reported SmI2 reductions where benzylic
OH groups were retained.24
14. For
a comprehensive review of TEMPO-based oxidations, see: Vogler, T.;
Studer, A. Synthesis 2008, 1979–1993.
15. (a) Threlfall, R.; Davis, A.; Howarth, N. M.; Fisher, J.; Cosstick, R. Chem.
Commun. 2008, 585–587; (b) Zhao, M. Z.; Li, J.; Mano, E.; Song, Z. G.;
Tschaean, D. M.; Grabowski, E. J. J.; Reider, P. J. J. Org. Chem. 1999, 64,
2564–2566.
16. Allevi, P.; Anastasia, M. Tetrahedron: Asymmetry 2000, 11, 3151–3160.
17. See also: (a) Bloemhoff, W.; Kerling, K. E. T. Recl. Trav. Chim. Pays-Bas 1975, 94,
182–185; (b) Via Williams glycine template methodology: van der
Nieuwendijk, A. M. C. H.; Kriek, N. M. A. J.; Brussee, J.; van Boom, J. H.; van
der Gen, A. Eur. J. Org. Chem. 2000, 3683–3691; (c) A more recent approach
from a piperidine-carboxylic acid, itself derived from aspartic acid, may well be
more diastereoselective: Marin, J.; Briand, J.-P.; Guichard, G. Eur. J. Org. Chem.
2008, 1005–1012.
CO2Et
CO2Et
OH
O
N
SmI2
THF
NHBoc
Boc
Me
Me
25
26
Instead (Scheme 5), exhaustive hydrogenation of 23, including
hydrogenolysis of the benzylic alcohol, followed by reprotection
afforded amino-alcohol 27 in a satisfactory yield. Finally, TEM-
PO-PhI(OAc)2 oxidation afforded the known Boc amino acid
28;27,28 the Me ester of 28 was previously made via Heck
chemistry.20
In summary, we have demonstrated syntheses of three structur-
ally diverse a-amino acids 14, 15 and 28 as single diastereoisomers
using the ANDA reaction. Careful attention to the reactivity and
regiochemical preference of each diene, particularly when unsym-
metrical, is essential. In particular a novel, concise synthesis of the
important collagen constituent d-hydroxylysine in a protected
form is shown.
18. Martin, S. F.; Hartmann, M.; Josey, J. A. Tetrahedron Lett. 1992, 33, 3583–3586;
Note: the distal adducts of sorbates shown here should be drawn as proximal,
as in a later correction: Martin, S. F.; Hartmann, M.; Josey, J. A. Tetrahedron Lett.
1993, 34, 2852.
19. Lindahl, G.; Linstedt, G.; Linstedt, S. Arch. Biochem. Biophys. 1967, 119, 347–352.
20. (a) Collier, P. N.; Campbell, A. D.; Patel, I.; Taylor, R. J. K. Tetrahedron 2002, 58,
6117–6125; (b) Collier, P. N.; Patel, I.; Taylor, R. J. K. Tetrahedron Lett. 2002, 43,
3401–3405.
21. For some examples of symmetrical dienes in the ANDA, see: (a) Shireman, B. T.;
Miller, M. J. J. Org. Chem. 2001, 66, 4809–4813; (b) Shireman, B. T.; Miller, M. J.;
Jonas, M.; Wiest, O. J. Org. Chem. 2001, 66, 6046–6056; (c) Pepper, A. G.; Procter,
G.; Voyle, M. Chem. Commun. 2002, 1066–1067; (d) King, S. B.; Ganem, B. J. Am.
Chem. Soc. 1994, 116, 562.
22. Gouverneur, V.; Ghosez, L. Tetrahedron Lett. 1991, 32, 5349–5352.
23. Pulz, R.; Watanabe, T.; Schade, W.; Reissig, H.-U. Synlett 2000, 983–986.
24. Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999, 55, 11755–
11772.
25. Cao, X.-P. Tetrahedron 2002, 58, 1301–1307.
26. D.A. O’Farrell, S. Waterson. M. Chem. projects, University of Liverpool, 2007–
2008 and 2008–2009.
Acknowledgements
27. Ueda, K.; Waki, M.; Izumiya, N. Int. J. Pept. Protein Res. 1987, 30, 33–39.
28. In retrospect, we believe that the rather low yields obtained in the oxidations
of 13 to 14 and 27 to 28 may have been due to the batch of TEMPO employed.
As given above, a similar oxidation of 23 to 24, using a new batch of TEMPO
and performed later, gave a very good yield of 80%, and this is probably the
expected yield for the other TEMPO oxidations.
We are grateful to the EPSRC for a DTA award to L.B. and the
University of Liverpool for consumables grants to D.O’F. and S.W.
(M. Chem. projects, 2007–8 and 2008–9). We also thank Professor
Richard Taylor (University of York) for valuable discussions on
diene synthesis.