B. Das et al. / Bioorg. Med. Chem. Lett. 20 (2010) 2303–2305
2305
of aculeatins A and B.10 This protocol has not been used earlier for
the synthesis of aculeatins to install a new chiral centre with syn-
selectivity.3 All the steps involved in the present synthesis are
high-yielding and the applied reagents are readily available. The
overall process is simple and straightforward. The ease of synthesis
that this strategy offers is impressive. In some of the earlier meth-
ods (i) the reactions steps were comparatively larger,3f (ii) the
intermediates were obtained in unsatisfactory yields3e and (iii) lar-
ger reaction times were required.3b,c Thus the present method is a
new and efficient advantageous route to the stereoselective syn-
thesis of aculeatins A and B.
Falomir, E.; Carda, M.; Marco, J. A. Tetrahedron 2006, 62, 9641; (d)
Chandrasekhar, S.; Rambabu, Ch.; Shyamsunder, T. Tetrahedron Lett. 2007, 48,
4683; (e) Peuchmaur, M.; Wong, Y.-S. J. Org. Chem. 2007, 72, 5374; (f) Suresh,
V.; Selvam, J. J. P.; Rajesh, K.; Venkateswarlu, Y. Tetrahedron: Asymmetry 2008,
19, 2008.
4. (a) Hanawa, H.; Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 1708;
(b) Gupta, P.; Naidu, S. V.; Kumar, P. Tetrahedron Lett. 2004, 45, 849.
5. Felpin, F.-X.; Lebreton, J. J. Org. Chem. 2002, 67, 9192.
6. (a) Bartlett, P. A.; Meadows, J. D.; Brown, E. G.; Morimoto, A.; Jernstedt, K. K. J.
Org. Chem. 1982, 47, 4013; (b) Bongini, A.; Cardillo, G.; Orena, M.; Porzi, G.;
Sandri, S. J. Org. Chem. 1982, 47, 4626.
7. De Brabander, J.; Vanhessche, K.; Vandewalle, M. Tetrahedron Lett. 1991, 32,
2821.
8. Ashenhurst, J. A.; Gleason, J. L. Tetrahedron Lett. 2008, 49, 504.
9. Sabitha, G.; Padmaja, P.; Sudhakar, K.; Yadav, J. S. Tetrahedron: Asymmetry 2009,
20, 1330.
Acknowledgements
10. The spectral data of two new important intermediates 6 and 10 are given
below.
Compound 6: IR 1722, 1402, 1261 cmÀ1 1H NMR (200 MHz, CDCl3): d 4.52–
;
The authors thank CSIR and UGC, New Delhi for financial
assistance.
4.41 (2H, m), 3.42 (1H, dd, J = 9.0, 4.0 Hz), 3.30 (1H, dd, J = 9.0, 7.0 Hz), 2.42–
2.32 (2H, m), 1.81–1.62 (2H, m), 1.44–1.21 (22H, m), 0.89 (3H, t, J = 7.0 Hz); 13C
NMR (50 MHz, CDCl3): d 148.7, 78.5 75.4, 34.5, 31.8, 31.2, 29.9, 29.6, 29.2,
22.5,14.2, 4.8; MS (ESI): m/z 447 [M+Na]+, 425[M+H]+; HRMS (ESI): m/z
447.1380 [M+Na]+. Calcd for C18H33I O3Na; m/z 447.1372.
References and notes
Compound 10: IR 3419, 1462, 1269 cmÀ1 1H NMR (200 MHz, CDCl3): d 3.84
;
1. Heilimann, J.; Mayr, S.; Brun, R.; Rali, T.; Sticher, O. Helv. Chem. Acta 2000, 83,
2939.
2. Salim, A. A.; Su, B.-N.; Chai, H.-B.; Riswan, S.; Kardono, L. B. S.; Ruskandi, A.;
Farnsworth, N. R.; Swanson, S. M.; Kinghorn, A. D. Tetrahedron Lett. 2007, 48,
1849.
(1H, m), 3.04 (1H, m), 2.72 (1H, t, J = 5.0 Hz), 2.45 (1H, dd, J = 5.0, 4.0 Hz), 2.02
(1H, br s), 1.82 (1H, m), 1.49–1.40 (5H, m), 1.36–1.20 (20H, m), 0.88 (3H, t,
J = 7.0 Hz) 13C NMR (50 MHz, CDCl3): d 70.0, 50.6, 46.2, 39.9, 37.8, 32.0, 29.8,
29.7, 29.0, 25.6, 22.4, 20.8, 14.1; MS (ESI): m/z 293 [M+Na]+; HRMS (ESI): m/z
293.1356 [M+Na]+. Calcd for C18H33I O3Na; m/z 293.1347.
3. (a) Wang, Y.-S. Chem. Commun. 2002, 686; (b) Falomir, E.; Alvarez-Bercedo, P.;
Carda, M.; Marco, J. A. Tetrahedron Lett. 2005, 46, 8407; (c) Alverz-Bercedo, P.;