Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC02217K
COMMUNICATION
Journal Name
2
3
For selected reviews on Rh(III)-catalyzed C−H acꢀvaꢀon, see:
(a) T. Satoh and M. Miura, Chem.—Eur. J., 2010, 16, 11212;
(b) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc.
Chem. Res., 2012, 45, 814; (c) G. Song, F. Wang and X. Li,
Chem. Soc. Rev., 2012, 41, 3651; (d) G. Song and X. Li, Acc.
Chem. Res., 2015, 48, 1007.
For selected examples on Rh(III)-catalyzed redox-neutral C−H
activation, see: (a) N. Guimond, S. I. Gorelsky and K. Fagnou,
J. Am. Chem. Soc., 2011, 133, 6449; (b) Y.-F. Wang, K. K. Toh,;
J.-Y. Lee and S. Chiba, Angew. Chem. Int. Ed., 2011, 50, 5927;
(c) G. Liu, Y. Shen, Z. Zhou and X. Lu, Angew. Chem. Int. Ed.,
2013, 52, 6033; (d) D. Zhao, Z. Shi and F. Glorius, Angew.
Chem. Int. Ed., 2013, 52, 12426; (e) B. Liu, C. Song, C. Sun, S.
Zhou and J. Zhu, J. Am. Chem. Soc., 2013, 135, 16625; (f) S.
Yu, S. Liu, Y. Lan, B. Wan and X. Li, J. Am. Chem. Soc., 2015,
137, 1623.
the [Rh(III)Cp*] species by 1a to complete the catalytic cycle. In
another route (path b), the reductive elimination of IM2 affords the
intermediate IM6, which is further transformed into IM7 or IM8 via
an oxidative addition.9d After a protonation, the OAT product 3a′ is
generated. In the presence of Ag+, the C(sp3)−N bond cleavage of 3a′
gives IM9.13 Further intramolecular nucleophilic addition and β-
hydride elimination produce the indole 3a.
4
5
6
X. Huang, J. Huang, C. Du, X. Zhang, F. Song and J. You,
Angew. Chem. Int. Ed., 2013, 52, 12970.
B. Zhou, Z. Chen, Y. Yang, W. Ai, H. Tang, Y. Wu, W. Zhu and Y.
Li, Angew. Chem. Int. Ed., 2015, 54, 12121.
For selected reviews on C−N cleavage, see: (a) N. J. Turner,
Chem. Rev., 2011, 111, 4073; (b) K. Ouyang, W. Hao, W.-X.
Zhang and Z. Xi, Chem. Rev., 2015, 115, 12045.
7
For selected examples, see: (a) S. Ueno, N. Chatani and F.
Kakiuchi, J. Am. Chem. Soc., 2007, 129, 6098; (b) Y. Kuninobu,
M. Nishi and K. Takai, Chem. Commun., 2010, 46, 8860; (c) S.
Guo, B. Qian, Y. Xie, C. Xia and H. Huang, Org. Lett., 2011, 13
,
522; (d) R. Shi, L. Lu, H. Zhang, B. Chen, Y. Sha, C. Liu and A.
Lei, Angew. Chem. Int. Ed., 2013, 52, 10582; (e) X. Chen, T.
Chen, Q. Li, Y. Zhou, L.-B. Han and S.-F. Yin, Chem. Eur. J.,
2014, 20, 12234; (f) Y.-S. Bao, B. Zhaorigetu, B. Agula, M.
Baiyin and M. Jia, J. Org. Chem., 2014, 79, 803; (g) Y. Zhao
and V. Snieckus, Org. Lett., 2014, 16, 3200.
8
9
(a) X. Li, C. D. Incarvito, T. Vogel and R. H. Crabtree,
Organometallics, 2005, 24, 3066; (b) K. Pati and R.-S. Liu,
Chem. Commun., 2009, 5233; (c) J. Xiao and X. Li, Angew.
Chem. Int. Ed., 2011, 50, 7226.
Scheme 5 Plausible mechanism for the formation of N-alkylindole.
(a) X. Zhang, Z. Qi and X. Li, Angew. Chem. Int. Ed., 2014, 53
,
In conclusion, we have addressed for the first time a Rh(III)-
catalyzed regioselective annulation of tertiary aniline N-oxides with
alkynes via the sequential C(sp2)–H and C(sp3)–N activation, which
provides a novel method to prepare N-alkylindoles. Using N-oxide
as a traceless directing group, this annulation proceeds well under
the mild reaction conditions and does not need metal oxidants. The
N,N-dimethylaniline N-oxides with the strong electron-withdrawing
nitro and acetyl groups on the phenyl ring and cyclic arylamine N-
oxides encounter a selectivity switch to afford the OAT products
rather than the indole derivatives under the same conditions.
Further investigation to verify the mechanism of this methodology
is in progress.
10794; (b) U. Sharma, Y. Park and S. Chang, J. Org. Chem.,
2014, 79, 9899; (c) R. B. Dateer and S. Chang, J. Am. Chem.
Soc., 2015, 137, 4908; (d) Z. Zhou, G. Liu, Y. Chen and X. Lu,
Adv. Synth. Catal., 2015, 357, 2944; (e) N. Barsu, M. Sen, J. R.
Premkumarb and B. Sundararaju, Chem. Commun., 2016, 52
1338; (f) H. Wang, M. Moselage, M. J. González and L.
Ackermann, ACS Catal., 2016, , 2705.
10 For the transition metal-catalyzed synthesis of indoles, see:
,
6
(a) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106
2875; (b) S. Cacchi and G. Fabrizi, Chem. Rev., 2011, 111
,
,
PR215; (c) M. Shiri, Chem. Rev. 2012, 112, 3508; (d) T. Guo, F.
Huang, L. Yu and Z. Yu, Tetrahedron Lett., 2015, 56, 296; (e) B.
Zhou, Y. Yang, H. Tang, J. Du, H. Feng and Y. Li, Org. Lett.,
2014, 16, 3900; (f) Y. Yang, X. Wang, Y. Li and B. Zhou,
Angew. Chem. Int. Ed., 2015, 54, 15400.
11 For the application of indoles, see: (a) R. J. Sundberg, Indoles,
Academic Press, San Diego, 1996; (b) T. Eicher and S.
Hauptmann, The Chemistry of Heterocycles: Structure,
Reactions, Syntheses, and Applications, 2nd ed.,Wiley-VCH,
Weinheim, 2003. (c) T. Kawasaki and K. Higuchi, Nat. Prod.
Rep., 2005, 22, 761; (d) A. J. Kochanowska-Karamyan and M.
T. Hamann, Chem. Rev., 2010, 110, 4489.
12 E. M. Simmons and J. F. Hartwig, Angew. Chem. Int. Ed., 2012,
51, 3066.
13 X. Zhang, W. Yang and L. Wang, Org. Biomol. Chem., 2013, 11
3649.
This work was supported by grants from the National NSF of
China (Nos 21432005, 21272160 and 21321061).
Notes and references
1
For selected examples, see: (a) A. Hagfeldt, G. Boschloo, L.
Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595;
(b) P. Ruiz-Sanchis, S. A. Savina, F. Albericio and M. Álvarez,
Chem. Eur. J., 2011, 17, 1388; For selected books, see: (c) C.-
G. Wermuth, The Practice of Medicinal Chemistry, 3rd ed.,
Academic Press, London, 2008; d) M. Waser, in Progress in
the Chemistry of Organic Natural Products, Vol. 96 (Eds.: A. D.
Kinghorn, H. Falk, J. Kobayashi), Springer-Verlag, New York,
2012.
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins